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ABSTRACT 

 
The probability of Acoustic Emission (AE) detection associated with fatigue 

crack extension in steel bridge components is a difficult problem due to the complexity of 

the AE sources. AE is a very promising technique for structural health monitoring and 

automated micro-crack detection as it is generated by the material itself, unlike other 

nondestructive testing techniques (for example impact echo and ultrasonics), which 

require external input sources. Characterizing the source of AE is an ongoing challenge 

because AE sensors are not only sensitive to the AE signals but also to mechanical noise 

and reflections. It is therefore difficult to interpret the actual AE signals related to 

microcrack extension. Assessing the probability of detection is also influenced by the 

medium of wave propagation, threshold settings, sensitivity and frequency range of the 

sensors, and source–to–sensor distance. This dissertation addresses AE detection 

associated with fatigue crack extension in steel bridge elements and the associated 

probability of detection as a function of the stress intensity range. AE events associated 

with fatigue crack extension are assessed using moment tensor and b-value analysis. AE 

events are also synchronized with the strain field at the crack tip through the use of 

Digital Imaging Correlation (DIC). For simplicity, the Poisson and Weibull distributions 

are employed to calculate the probability of AE detection associated with fatigue crack 

extension at different levels of fatigue crack growth. 
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CHAPTER 1 

INTRODUCTION 

Acoustic emission (AE) is a term that is used to describe stress waves produced by the 

sudden internal stress redistribution of materials caused by the changes in the internal 

structure (ASNT 2005, Scruby 1987). Possible causes of these changes are crack 

initiation and growth, crack opening and closure, dislocation movement, twinning, and 

phase transformation in monolithic materials such as steel (ASNT 2005).  Each damage 

mechanism is associated with varying types and levels of deformation that release energy 

in the form of stress waves whenever a dynamic micro-structural change occurs (Scruby 

1987). Micro-damage events generate AE signals according to the characteristics of the 

source (ASNT 2005, Scruby 1987, Pollock 1981). Most acoustic emission is damage-

related; thus, the detection and monitoring emissions is often used to predict material 

failure. The difference between the AE technique and other nondestructive evaluation 

(NDE) methods is that AE detects activity caused by distress within the material as it 

occurs, while other NDE methods attempt to interrogate the nature of flaws or the 

internal structure of the materials themselves. Furthermore, AE is very easily 

implemented as it only requires the attachment of small sensors to the surface of the 

structure and the AE system used to continuously monitor the progression of damage due 

to loading or other external sources. 
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1.1 NEED FOR NONDESTRUCTIVE EVALUATION / STRUCTURAL HEALTH MONITORING 

Highway bridges are key components of a healthy and productive transportation 

infrastructure. According to Parmar and Sharp (2009), there is an increasing demand for 

ensuring the integrity and performance of our nation’s bridges. A variety of factors may 

lead to their degradation. Cracks and flaws in steel bridge components may have 

originated during the fabrication process and grown due to fatigue, corrosion, or both. 

The main cause of deterioration of highway bridge components is a complex combination 

of factors that include both load and environment. Such factors damage bridges through 

processes such as crack initiation and growth and plastic/elastic deformations. Bridges 

require timely inspection and evaluation of structural health. Unpredictability of 

degradation introduces a degree of uncertainty in the decision making process regarding 

the frequency of inspection and planning for repair and replacement of the affected 

structural parts. Since there is a physical limitation on access to various components, any 

visit for inspection becomes expensive even if the task is to inspect only a single 

structural element. The consequences of a bridge failure due to uncertainty in predicting 

degradation could be disastrous to the motorist and deleterious to the nation’s economy. 

In recent years, there have been several highly publicized incidents that involved 

the catastrophic failure of transportation systems. The first of these involved the interstate 

highway bridge I-35W over the Mississippi River in Minneapolis, Minnesota, which 

collapsed at 6:05 p.m. on August 1, 2007 (wikipedia.com) (Figure 1.1). The I-35W 

bridge was designed and constructed before metal fatigue cracking in bridges was a well-
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understood phenomenon. However, it is noted that this failure was not attributed to 

fatigue damage. 

 In the late 1970s, when a better understanding of metal fatigue cracking was 

established within the industry, steel bridges such as the I-35W bridge were recognized as 

being “non-load-path-redundant”—that is, if certain main truss members (termed 

“fracture-critical”) failed, the bridge would collapse. According to the Federal Highway 

Administration (FHWA) 2007 data, 19,273 are considered “non-load-path-redundant” 

among 600,000 bridges in the National Bridge Inventory. About 465 bridges within the 

inventory have a main span that is a steel deck truss. SCDOT has for a number of years 

   

   

Figure 1.1. Interstate highway bridge I-35W, Minneapolis, Minnesota, collapsed at 6:05 
p.m. on August 1, 2007(wikipedia.com). 

 



www.manaraa.com

 

4 
 

been aware of potential fatigue cracking in the State’s bridges (Figure 1.2). As with other 

State DOT’s, SCDOT is particularly aware of potential issues with non-load-path-

redundant bridges, where the failure of a tension member could lead to a catastrophic 

failure. Because of a general lack of understanding in the 1950s and 1960s of the effects 

of cyclical loading on steel bridges, many bridges built during that period had poor 

fatigue-resistant details. Since about 1975, Mn/DOT has conducted fatigue studies on 

seven State bridges, including the I-35W bridge, where inspections found evidence of 

fatigue cracking. The Lafayette bridge, built in 1968, carries U.S. Highway 52 over the 

Mississippi River in St. Paul, Minnesota. In 1975, inspectors found a crack in a primary 

girder that developed in a lateral gusset plate web gap and extended through the bottom 

flange and about 75 percent of the height of the web. In 2006, TKDA Consultants, Inc., 

of St. Paul, conducted a vulnerability assessment of the bridge with regard to fatigue 

cracking. The bridge is scheduled to be replaced in 2010. The Dresbach Bridge, built in 

1967, carries Interstate 90 over the Mississippi River in the southeastern part of the State. 

The bridge is a fracture-critical two-girder system with floor beams and stringers. A 1975 

inspection found two vertical fatigue cracks in the structure, one of which was 18 inches 

long. Additional cracks were found in 1987, 1993, 1996, and 1998. These two incidents 

are clear examples of the need for monitoring of structures with an emphasis on fatigue 

crack growth.  
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Figure 1.2. Fatigue crack at steel girder in Rock Hill, SC at Intersection I-77/SC901. 

 

There are many more examples of the need for crack monitoring. A primary goal 

of non-destructive evaluation (NDE) is to locate and monitor defect growth so that 

preventive actions can be taken before the defects reach a critical size and failure occurs. 

Toward this end, many non-destructive test (NDT) methods have been employed, 

including x-ray, radiography, ultrasonic, magnetic resonance, dye penetrant and eddy 

current. A common trait of these techniques is that the energy to be used to detect the 

defects is propagated into the structure, and this energy must then interact with the defect. 

If the orientation or the size of the defect is such that the energy fails to interact with or 

be modulated by the defect, the defect will remain undetected. Additionally, the methods 

listed above are, at best, difficult to apply to a structure while it is in service.  Therefore, 

flaw growth while the structure is under load is difficult to monitor. Acoustic emission 

has the ability to detect and locate flaw growth while the structure is in service. 
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 Due to applied stress a, a defect begins to grow and releases energy in the form of 

a stress wave or stress pulse. To detect this stress wave a transducer is attached to the 

structure and the output from the transducer is captured. AE sensors are very sensitive to 

the a wide variety of sources, some of which are not associated with the defect of interest.  

It is essential to know the characteristics of the acoustic emission associated with the 

actual crack growth. This signal can then be used to determine the nature of the event and 

prognosis models employed to predict remaining service life.   

 1.2 RESEARCH SIGNIFICANCE 

Assessing the probability of AE detection during fatigue crack growth in steel 

bridge components remains a difficult problem due to the complexity of AE sources. The 

probability of AE detection is related not only to AE generation during fatigue crack 

growth but also to several other factors including wave propagation characteristics of the 

material, frequency range of the sensors,  the source–to–sensor distance.  

Detecting AE associated with fatigue crack growth is critical in the development 

of AE as a primary structural health monitoring method. When a crack is subjected to 

cyclic loading, the crack tip travels a very short distance in each loading cycle, in the 

range of 1 x 10-4 mm/cycle (4 x 10-6 in./cycle) to 1 x 10-3 mm/cycle (4 x 10-5 in./cycle) 

(Hamstad and McColskey 1999, ASNT 2005). When a small crack extends, stress free 

surfaces are created and stress fields in the crack trip abruptly redistribute. Typically, at 

the lower crack growth rate, several thousand cycles are required to obtain one valid 

acoustic emission signal (ASNT 2005). At the higher crack growth rate, approximately 

one or two cycles are required for a valid event from A514 steel (Hamstad and 

McColskey 1999). Other steels require 18 to 130 cycles for a valid event. 
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Plastic deformation is the primary source of acoustic emission in metallic 

materials (ASNT 2005); however, these are rarely energetic events (Scruby 1987). When 

plastic deformation at the crack tip is prohibited, the crack can travel through grains by 

splitting atom bonds in lattice planes. This is called intra- or trans-granular cleavage. 

When the crack propagates along grain boundaries, it is referred to as inter-granular 

cleavage (ASNT 2005). Cleavage or similar highly emissive mechanisms produce very 

energetic acoustic emissions events (Scruby 1987, Pollock 2009, ASNT 2005) that are 

readily detected with commercial sensors.     

The overall objective of the research program reported in this dissertation is to 

characterize the source of AE signals in steel bridge material. A secondary objective is to 

assess the probability of AE detection associated with fatigue crack extension. 

Mechanisms investigated include plastic deformation, inclusion debonding, crack 

extension, and cleavage fracture. 

1.3 RESEARCH METHODOLOGY 

This research is focused on assessing the probability of detection associated with 

fatigue crack extension in ASTM A572 Grade 50 structural steel with acoustic emission. 

Compact tension (CT) specimens were utilized. This type of specimen is representative 

of a single edge crack steel bridges. With this specimen geometry, relatively low load is 

sufficient for a high stress intensity (K) value For AE source characterization, waveform 

and moment tensor analysis requires the use of wideband sensors (WDI-AST). Six WDI-

AST and two R15I-AST sensors were placed near the crack tip to record AE and thereby 

minimize attenuation effects. 
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Source characterization, signal discrimination, and noise reduction are 

challenging yet vital for successful AE applications. This research study is focused on 

source mechanisms and the associated acoustic emission signatures when the sensor are 

placed near the crack tip.  Further study is recommended to investigate the effects of 

attenuation.  The probability of detection associated with fatigue crack extension is 

evaluated as a function of stress intensity range (∆K) as this is a function of all the 

variables for fatigue crack growth such as load, crack length, and geometry.   

This dissertation includes eight chapters in addition to appendices that present the 

supplementary data and calculations. Chapters 4, 5 and 6 are organized as stand-alone 

papers.  Hence, conclusions may be sometimes repeated at the end of these chapters. 

A literature review of AE for structural health monitoring and fatigue crack 

growth are provided in Chapter 2. The material and instruments used for the study are 

described in Chapter 3.Chapter 4 describes the monitoring of AE during fatigue loading. 

The results obtained by SEM scanning are discussed in regard to confirmation of the 

failure mechanisms during fatigue crack growth.  In Chapter 5, digital image correlation 

is described and utilized for the development of AE correlation plots during the fatigue 

loading. The probability of detection associated with the fatigue crack extension in steel 

bridge component through the use of AE data is the subject of Chapter 6. AE events are 

synchronized with the strain field at a head of the crack tip monitored through Digital 

Imaging Correlation (DIC) and thus the real AE events associated with the fatigue crack 

extension are screened and POD is calculated. A summary of findings, comments on 

practical implications, and recommendations and suggestions for future research are 

presented in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW  

This chapter is divided into three parts: a) general background information on 

acoustic emission and nondestructive inspection of steel structures; b) theory of b-value 

analysis and source identification in steel; and c) general discussion on AE parameters.  

2.1 BACKGROUND INFORMATION ON ACOUSTIC EMISSION 
 

Acoustic emission is the generation and propagation of stress waves in materials 

due to deformation, initiation and growth of a crack, opening and closing of a crack, 

diffusion and movement of a dislocation, and twining (ASNT 2005). The sources of AE 

are predominantly damage-related; therefore careful AE monitoring can lead an 

investigator to the prediction of material failure. Over the past decades, various acoustic 

emission monitoring devices have been developed for nondestructive testing and 

evaluation of structures including the transportation infrastructure.  

There are many non-destructive evaluation methods which can locate a crack, but 

not all such methods are capable of characterizing growing/active cracks that are most 

likely to result in structure failure. A scientifically sound, technically feasible, reasonably 

predictable and economically attractive bridge management program should be 

developed for efficient functioning of the bridge. Acoustic emission (AE) has the 

potential to eliminate much of the subjectivity of traditional methods of visual inspection 
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and bridge condition determination. AE monitoring is capable of performing the critical 

tasks of detection, location and characterization of the flaws that are likely to cause 

serious impairment of the bridge structure and its ability to perform as designed. A key 

advantage of the AE method over other NDT approaches is its ability to respond only to 

active flaws making it a principal candidate for flaw characterization and real time health 

monitoring of highway bridges. 

 

Figure 2.1. Schematic of acoustic emission process. 

According to  Parmar and Sharp (2009), Pollock and Smith (1971) were the first 

to apply AE monitoring for bridges, wherein they collected data during proof testing of a 

portable tank bridge for the British Ministry of Defense. They demonstrated that signals 

recorded in the field could be associated with test results on laboratory specimens. In 

1972, Argonne National Laboratory proposed to monitor emissions from a bridge on I-80 

in Illinois and Hopwood (1973) monitored emissions from the eye-bar members of a 

bridge. Although good transmission through eye-bar members of the bridge was observed 

the signal to noise ratio remained a serious difficulty. An extensive program funded by 

the Federal Highway Administration (FHWA) with Battelle Pacific Northwest in the late 

1970s resulted in the development of a battery powered digital acoustic emission monitor 
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(Hutton and Skorpik 1975, 1978) that allowed periodic data recording and storage on 

erasable programmable read only memory chips for further processing and evaluation. 

This study was among the first to demonstrate the potential of AE frequency spectrum 

analysis for centralized signal processing. The noise to signal ratio, however, remained a 

concern during these studies. 

The Kentucky Transportation Research Center, from 1980–1982, used a digital 

AE monitor to periodically monitor a bridge on I- 471 and reported effects of traffic and 

rainfall as sources of emission noise (Miller 1987). Dunegan Corporation, under contract 

from the West Virginia Department of Highways, examined the practical difficulties 

related to long term AE monitoring of bridges (Hartman 1983). The financial benefits of 

AE monitoring over the use of periodic ultrasonic, magnetic particle, or liquid penetrant 

inspections of known defects were discussed. United Technologies Research Center, 

under contract from FHWA, performed laboratory and field tests to characterize AE 

signals from flaws and various noise related sources (Miller et al. 1983). Both time and 

frequency domain representations of signals were investigated. Waveforms and source 

classification for filtering of noise and for discriminating between different damage 

related events, such as brittle fracture and fatigue, were demonstrated.  

Prine and Hopwood (1985) considered an acoustic emission for service 

evaluations of bridge components. They pointed out that emission signals from bridges 

contained information on traffic volume and vehicle speed and weight, as well as on 

structural details and transducer characteristics.  
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In 1987, the University of Maryland monitored the Woodrow Wilson Bridge on 

the border of Maryland and Virginia for the Maryland Department of Transportation. 

They found that the predominant peak frequency of noise emissions is distinctly lower 

than crack related emissions. Suitable software filters, designed to exclude signals whose 

time domain parameters do not fall within the range of parameters of crack related 

emissions, can eliminate most noise signals (Vannoy et al. 1987). These studies were 

followed by laboratory tests on full size A588 bridge beams (Vannoy and Azmi 1991). 

AE parameters of cracks versus noise on rolled, welded, and cover plated beams were 

characterized in both the time and frequency domains. It was determined during these 

studies that corrosion has no effect on the time domain parameters of crack related 

emissions. A related study at the University of Maryland (Hariri, 1990) sought to develop 

a database of signal characteristics from different bridge steels and various material and 

loading conditions, as well as from different part geometries and thicknesses for bridge 

related applications. 

 FHWA has conducted a series of field tests on several bridges. Results of these 

tests have emphasized the need for source location and guard sensors for filtering 

irrelevant acoustic emission events (Carlyle 1993, Carlyle and Ely 1992, Carlyle and 

Leaird 1992). The effectiveness of AE was demonstrated for finding new cracks. 

The Canadian National Railways sponsored AE monitoring of 36 railroad bridges 

over a period of three years (Gong et al. 1992). Using a known functional relationship 

between the emission count rate and the stress intensity factor range, this study was able 

to classify cracks into five levels of severity. Spatial discrimination and filtering using 
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parameter windows determined from laboratory tests on bridge steels were used to 

minimize noise.  

The effectiveness of combining AE and strain gage monitoring was demonstrated 

on three bridges in Wisconsin and California (Prine 1993). In a departure from the usual 

crack characterization function of AE monitoring, a bascule bridge was tested to 

determine the cause of loud impact noises that accompanied the lifting and lowering of 

the bridge. McBride et al. (1993) used continuous AE monitoring for enhanced fatigue 

crack detection. AE has also been used in detecting the onset of crack growth in rail 

steels (Bassim et al., 1994). Such data has been used in attempts to design theoretical 

models for fatigue damage mechanisms (Fang et al. 1995).  

The work performed to date has provided a reasonable scientific base upon which 

to build an engineering application of AE as part of a steel bridge health monitoring and 

assessment technique. Nearly all of the work has sought to use AE to detect the initiation 

of damage, locate it, monitor its growth, and characterize the severity of damage.  

In the work described above, little or no attempt has been made to understand the 

true source of the acoustic emission data in steel bridge materials.  This information is 

critical for the development of models for the prognostics of steel bridges, which differs 

significantly in scope and difficulty from the more commonly addressed problem of real-

time characterization of crack ‘severity’.  The purpose of this study is to enhance the 

understanding of the actual source mechanism of AE associated with the fatigue crack 

extension.  A related goal is to assess the probability of detection of fatigue crack 

extension based on AE data.  This work is limited to source characterization in ASTM 
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572 G50 steel which is widely used in the steel bridge construction industry. From an 

engineering point of view, this restriction is quite significant. The data storage, 

processing, and complexity of the AE system may be greatly reduced if the source 

mechanisms can be understood. Noise sources associated with the structure may be 

minimized, since the properties of the AE events associated with the fatigue crack 

extension will be known. This information will support decision making of the bridge 

owner, make it feasible to configure a system for constant surveillance, and also provide 

early warning of impending failure for critical bridge components.  

2.2 NON-DESTRUCTIVE TESTING 

Every structure or component in the real world contains imperfections. The 

imperfections in a structure may or may not be visible or harmful. Accordingly, 

nondestructive testing (NDT), or nondestructive inspection (NDI), or nondestructive 

evaluation (NDE) can be performed to ensure that structures can be safely operated for a 

certain period of time. In general, the role of NDT is to detect, locate, and evaluate the 

significance of flaws for in-service structures. NDT also plays a role of quality control in 

the manufacturing process. It is used to ensure that imperfections in every part of a 

structure are below an accepted tolerance prior to installation. 

Benefits of NDT include life extension and cost savings. Preventive maintenance 

associated with inspections will reduce the cost of major repairs, such as repairing cracks. 

NDT for quality control provides more confidence in the design process, thus leading to a 

reduced factor of safety and construction cost. 
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NDT can be categorized into two groups: active and passive. Active NDT 

methods send energy into or onto the specimen. Flawed and unflawed specimens respond 

differently to this energy, which will be observed by a trained inspector. Examples of this 

method are ultrasonics, impact echo, radiography, and eddy current. The passive method 

observes acoustic or visual changes in a specimen under either a normal load condition or 

a proof cycle. A defect in the structure will reveal itself naturally. Passive methods 

include acoustic emission, visual inspection, dye-penetrant, and leak detection (Bray and 

Stanley1997). 

The most common nondestructive testing methods are summarized below. Each 

method has strengths and weaknesses and they are complementary to each another. 

Radiography:   

Radiography (ASNT 2005) utilizes the penetration of X or gamma radiation to the 

specimens. The X-ray is radiated from a radioactive isotope, and is received by film on 

the other side of the specimen. The film will show the density of the radiation by the 

color of the gray tone. A crack or imperfection usually reduces the thickness of the 

material. This causes a higher density of radiation, and a darker mark on the film. 

Magnetic Particle: 

The magnetic particle method (ASNT 2005) induces a magnetic field in a ferro-

magnetic specimen and dusts the surface with iron particles. If surface discontinuities are 

present, a distortion of iron particle arrangement will be seen due to the disturbance of the 

magnetic field.  
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Ultrasonics: 

Ultrasonic testing (ASNT 2005) is performed by transmitting high frequency 

sound waves into a material. The waves can be detected by a receiver on the opposite 

side of the specimen or hit the back wall of the specimen and reflect back to a receiver on 

the same side as the transmitter. An imperfection within the thickness can also interrupt 

or reflect the signal. The time of flight is used to calculate the thickness of the part, or the 

depth of the imperfection. 

Liquid Penetrant: 

In this test (ASNT 2005), the specimen is coated by a visible or fluorescent dye 

solution. If there are surface cracks, the dye will penetrate and leave the marks on the 

surface. Fluorescent dyes give better sensitivity than the normal dye, but an ultraviolet 

lamp must be used.  

Eddy Current: 

The eddy current method (ASNT 2005) uses electrical current generated in a 

conductive material by inducing a magnetic field. The electrical current (eddy current) 

will be continuously monitored during the test. Imperfections on or near the surface of a 

specimen will cause a change in the magnetic field, thus changing the level of eddy 

current.  
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Leak Testing: 

Leaking of a liquid from a tank or pressure vessel can be inspected by several 

methods. Examples include listening devices, pressure gauge measurements, liquid and 

gas penetrant techniques, and soap bubble testing (ASNT 2005). 

Visual Examination: 

Visual examination (ASNT 2005) is the oldest and the most widely used method 

of NDT. It can detect most of the serious defects on or near the surface of a structure. 

Visual examination may require tools to enhance the performance. These tools include a 

flashlight, knife, hand held magnifying glass, and hardness impressor. 

Acoustic Emission: 

Acoustic emission is defined as transient elastic waves within a material caused 

by the release of localized stress energy (ASTM E 1316). Hence, an event source is the 

phenomenon that releases energy into the material, which then propagates as an elastic 

wave. Acoustic emission can be detected in frequency ranges under 1 kHz, and have been 

reported at frequencies up to 100 MHz (ASNT 2005).  

AE is related to an irreversible release of energy, and can be generated from 

sources not involving material failure including friction, cavitation, and impact (ASNT 

2005). Events can also come quite rapidly when materials begin to fail, in which case AE 

activity rates are often studied as opposed to individual events (Scruby 1987). AE events 

that have been studied in this research among material failure processes include fatigue 

crack extension in steel bridge elements. 
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2.3 ACOUSTIC EMISSION FILTERING TECHNIQUES AND SOURCE LOCATION 

In addition to internal acoustic emission sources, external noise (background 

noise) such as mechanical rubbing, wind, air hoses, and moving trucks can create elastic 

waves, which interfere with the genuine data. These background noises have to be 

prevented or filtered out before the AE data is analyzed. 

The advantage of AE is that it is a global method rather than a local method 

meaning that the technique monitors a large area of the structure, rather than a small local 

area. As a result, the monitoring can be done within a short period of time and, is not 

labor intensive. However, the disadvantage of this technology is that the acoustic 

emission is dependent on the applied load. This means, some discontinuities may not 

generate detectable AE under a certain types or level of load.  

Specific areas of AE research are discussed below: 

Source Location: The ability to locate the position of discontinuities in a structure. This is 

beneficial particularly for large structures as it is time consuming to locate the area to be 

repaired.  

Source Identification: The ability to determine the type of discontinuities within a 

structure. This is also referred to as “failure mechanism typing” or ‘signature analysis’. In 

most cases, AE from different failure modes exhibits a different waveform.  
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Probability of Detection (POD):  

Several statistical forms including the Poisson distribution, Weibull distribution 

and Gumbel distribution might be applied for POD calculation (Pollock 2009). For 

simplicity Poisson distribution and Weibull distribution may be used for POD calculation 

in my study. 

Weibull distribution: 

The probability density function of a Weibull random variable is (Papoulis et al., 

2001)  
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where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. If 

the quantity x is a "detectable AE events", the Weibull distribution gives a distribution for 

which the high emissive failure (brittle fracture) is proportional to a power of time. A 

value of k > 1 indicates that the failure rate increases with time. This happens if there is 

an "aging" process, or parts that are more likely to fail as time go on. The cumulative 

distribution function for the Weibull distribution is  
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Poisson distribution: 

The amplitude distribution generated in the fatigue test leads directly to the 

expected number of events exceeding the detection threshold. Statistics can be used to 
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determine the probability that at least one signal will exceed the threshold so that the 

produced acoustic emission will be detected. For simplicity, the Poisson distribution may 

be used to determine the expected number of AE events crossing the threshold x, the 

probability of getting none above the threshold is e-x. Consequently, the probability of 

getting at least one above threshold is (1 - e-x).  

2.4 AMPLITUDE DISTRIBUTION 

The amplitude is the most fundamental parameter for acoustic emission since the 

threshold amplitude is the parameter that the data acquisition system uses to decide 

whether or not an emission will be recorded (Pollock 1978, Hill 1995, Valentin 1985, 

Hill et al. 1996, and Hill et al. 1998). Amplitude distribution is a histogram of the number 

of hits (plotted on a log scale) at different amplitude levels. Figure 2.2 is an example of 

this plot. Amplitude distribution is sometimes called a “differential amplitude 

distribution”. 

 

Figure 2.2. Cumulative amplitude distribution. 
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Several researchers have studied source identification by looking at humps in this plot. It 

was found that different humps represent different failure mechanism (Pollock 1978, Hill 

1995, Valentin 1985). 

2.5 CUMULATIVE AMPLITUDE DISTRIBUTION 

It is known that the attenuation in a material decreases the amplitude of emission 

as the wave travels (Elmore and Heald 1969). Therefore, a sensor closer to the source 

will detect higher amplitude of an event than sensors further away. This means that away 

from the source, the amplitude parameter itself cannot be referred to as a certain type of 

failure mechanism. As a result, cumulative amplitude distribution and b-value have been 

developed and applied to AE source identification (Pollock 1981). Cumulative amplitude 

distribution was first developed for seismology applications, and was later adopted for 

AE technology. Cumulative amplitude distribution is a log plot of the histogram of the 

number of hits at specified amplitude or higher. The slope of the plot is referred to as the 

b-value and will be discussed in the next section. 

2.6 THEORY OF B-VALUE  

The AE data acquisition system normally records the amplitude in voltage (V) or 

decibel (dB) units. The relationship between these units is: 
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where 

Vref = 1µV, 

A = amplitude in decibels 
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V = amplitude in voltage units 

For a given amplitude distribution function [f (V )], the number of hits for which the 

amplitude is equal to the value V. F(V ) is a cumulative amplitude distribution plot of the 

number of hits for which the amplitudes are equal to or higher than the value V. Then the 

two functions are related by the equation: 
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Φ(V) is a normalized function representing the probability that an amplitude exceeds V, 

and V0 is the smallest detected amplitude (typically threshold), which gives Φ(V0) = 1. 

The problem arises in developing a function Φ(V) that describes the nature of detectable 

failure. Pollock (1981), suggested use of the function: 
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where; 

b = parameter characteristic of the distribution function 

F(V ) and Φ(V) are related by the equation: 
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where 

N0 = total number of hits 

therefore; 
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The advantage of this function is that if plotted on a log-log scale, the function will be 

seen as a straight line with the slope of “- b”. This can be called a “power law”. 
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Now, if the amplitude in a decibel unit is replaced, the equation will be: 
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It is showed by Pollock (1981) that this b or B value is unique for each failure 

mechanism, and the log scale will remove the effect of wave attenuation. Therefore, the b 

or B value will not change with the distance between source to sensor, if all signals are 

attenuated equally (Pollock 1981). 

2.7 AVERAGE AMPLITUDE BASED B-VALUE  

In addition to the introduction of cumulative amplitude distributions and b-values 

described earlier, Pollock (1981) suggested “average amplitudes”, which are described by 

the equation: 
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where 

A  = average amplitude 

0A = threshold amplitude 
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Pollock stated that the plot of the graph log A  vs. time was a very promising way 

to analyze AE data. The advantages of this method are that it is easy to compute, can be 

performed in real time, and is easy to understand. 

The b value can change during a test, which can be explained as the transition 

from one mechanism to another. Pollock (1981) stated that most of the b-value range is 

between 0.7-1.5, but it could be as low as 0.4 or as high as 4.0. The lower values are 

usually associated with discontinuous crack growth in high-strength brittle metals, 

whereas the high values can be from plastic zone growth prior to crack extension. In 

1983, researchers conducted research on AE signatures from different defects (Scarpellini 

et al. 1983). The cumulative amplitude distribution showed a bi-linear slope, with b = 2 at 

lower amplitude and b =1 at higher amplitude. They suggested that there were two failure 

mechanisms in inclusion specimens. 

2.8 COMMON PARAMETERS USED IN AE 

To help visualize the AE data, an idealized waveform of a typical AE hit is shown 

in Figure 2.3. For convenience, a listing of AE Parameters is provided below: 

Threshold (Voltage Threshold): “A voltage level on an electronic comparator such that 

signals with amplitudes larger than this level will be recognized. The voltage threshold 

may be user adjustable, fixed, or automatic floating” (ASTM E 1316). The threshold is 

set for eliminating electronic background noise, which normally has low amplitude. 

Counts (AE counts): “The number of times the acoustic emission signal exceeds a preset 

threshold during any selected portion of a test” (ASTM E 1316). 
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Arrival time: Absolute time when a burst signal first crosses the detection threshold 

(ASTM E 1316).  

Peak amplitude: “The peak voltage of the largest excursion attained by the signal 

waveform from an emission event” (ASTM E 1316). In other words, peak amplitude is 

the highest point of the signal. It is the absolute value on either positive or negative side 

of a waveform. The peak amplitude is usually reported in decibels (dB) due to the wide 

range of typical values in voltage unit. Voltage is converted to decibels using the 

following equation: 

 










=
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where 

A = Amplitude in decibels 

V = Voltage of peak excursion 

Vref = Reference voltage, typically 1µV (Voltage generated by 1 mbar pressure of the 

face of sensor). 

 

Figure 2.3. Schematic of acoustic emission parameters (Ativitavas 2002) 
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Duration (Hit Duration): “The time between AE signal start and AE signal end” (ASTM 

E 1316). It is the time from the first to the last threshold crossing and is typically 

displayed in microseconds. 

Hit (Sensor Hit): “ The detection and measurement of an AE signal on a channel” (ASTM 

E 1316). 

Frequency: The number of cycles per second of the pressure variation in a wave (ASTM 

E 1316). Commonly, an AE wave consists of several frequency components. 

Event (AE Event): “A local material change giving rise to acoustic emission” (ASTM E 

1316). 

Source (AE Source): “The position of one or more AE events” (CARP, 1999) 
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CHAPTER 3 

MATERIALS AND INSTRUMENTATIONS 

This chapter addresses the material specification of the compact tension specimen 

utilized for the AE monitoring fatigue test. In addition, AE equipment, including AE data 

acquisition systems and sensors, are described. This chapter also describes the testing 

facilities utilized in this research. 

3.1 COMPACT TENSION (CT) SPECIMEN 

Compact tension (CT) specimen is utilized for AE monitoring fatigue test made of 

ASTM A572 G50 steel widely used for steel bridge materials in steel construction 

industry. 

Benefit of utilized CT specimen: 

� It is small and does not require much material. 

� Relatively low load is sufficient for a high k-value which can be very 

useful if the load capacity of MTS machine is limited. 

� It is the representative of single edge crack in in-service steel bridges. 

 

Disadvantages of CT specimen: 

� Production of a CT specimen is not simple. 
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� CT specimen crack is also opened by a significant bending moment on the 

specimen. Cracks in real structures usually do not show a similar type of 

loading. 

3.2 AE INSTRUMENTATIONS 

Two AE data acquisition systems were used for this research. Physical Acoustic 

Corporation (PAC), Princeton, New Jersey, manufactured both of them. Details are given 

below: 

The drawback of this system is that it has a 16 bit architecture, which can record any 

information only up to the maximum value of 65,535 or (216 –1). This directly affects the 

recording performance of AE duration, which can be longer than 100,000 microseconds 

in some tests. 

Eighteen channel MISTRAS system. The state-of-the-art MISTRAS system can 

acquire digital waveforms (Figure 3.1). The MISTRAS has adjustable settings (threshold, 

hit definition time, etc.) and is capable of very high data acquisition rates. Also, it has a 

very short rearm time. The MISTRAS includes an extensive suite of software programs 

that can be run on any Windows based computer. 

The MISTRAS hardware parameters and a signal-processing filter were set as described 

below: 

1. Test threshold = 45 dB; for 40 if the background noise is minimized. 

2. Signal processing filter = 100-400 kHz 

3. Peak definition time = 200 microseconds 
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4. Hit definition time = 400 microseconds 

5. Hit lockout time = 40 microseconds 

 

Figure 3.1. MISTRAS System. 
 
 

Table 3.1. Hardware Set-up 
Quantity Values 

Peak Definition Time (PDT) 200 µs 
 Hit Definition Time (HDT) 800 µs 
 Hit Lockout Time (HLT) 1000 µs 
 Maximum duration 1000 µs 
 Threshold 40 dB 
 Gain 23 dB 
 Sensor Preamplifier Gain (R15I) 40 dB 
 Sensor Preamplifier Gain (WDI) 40 dB 
 Sensor Band pass Filter (R15I) 80-200 kHz 

Sensor Band pass Filter (WDI) 200-900 kHz 

Event Timing  
 

First Threshold Crossing (FTC)  
 

3.3 AE SENSORS 

The term transducer (piezoelectric transducer) is most often used for acoustic 

emission sensor as it converts time dependent displacement into an electrical signal. The 
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active element of a piezoelectric transducer is a thin disk of piezoelectric material 

metalized on both faces for electrical contact, and mounted in a metal cylinder to provide 

electromagnetic interference shielding.  

 The piezoelectric ceramics commonly used in AE transducers are made of small 

crystals of titanates and zirconates which are mixed with other materials (most widely 

used commercial piezoelectric material is various phases of lead zirconate titanate PZT, 

i.e. PZT-4, PZT-5, PZT-5A, PZT-5H), molded to the desired shape, and fired in a kiln. 

The ceramic material is then made piezoelectric by poling, which is the process of 

heating the material above its Curie temperature while the material is in a strong electric 

field (PCA 2002).  The first piezoelectric ceramics in general use was barium titanate, 

and that was followed during the 1960's by lead zirconate titanate compositions, which 

are now the most commonly employed ceramic for making transducers. New materials 

such as piezo-polymers and composites are also being used in some applications. 

The thickness of the active element (PZT) is determined by the desired frequency 

of the transducer. A thin wafer element vibrates with a wavelength that is twice its 

thickness. Therefore, piezoelectric crystals are cut to a thickness that is half the desired 

radiated wavelength. The higher the frequency of the transducer, the thinner the active 

element. The primary reason that high frequency contact transducers are not produced is 

because the element is very thin and too fragile. 

The R15I-AST and WDI-AST integral preamplifier sensors represent a significant 

advancement for the field of acoustic emission by enclosing a low-noise FET input 40 dB 

pre-amplifier inside a standard high sensitivity sensor (Table 3.2). These rugged, small 
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size AE integral pre-amplifier/sensors eliminate the need for cumbersome pre-amplifiers 

by incorporating two functions into one, thereby reducing equipment costs and 

decreasing set-up time for field applications. R15I is general purpose sensor provides a 

good mix of high sensitivity and high low frequency rejection. These properties make it 

very useful for monitoring common structures such as pipelines, vessels, bridges, and 

storage tanks in petroleum, refineries, chemical plants, offshore platforms, as well as 

factory and process monitoring applications.  

Wideband (WDI-AST) sensors are typically used in research applications and 

other applications where a high fidelity AE response is required. In research applications, 

wideband AE sensors are useful where frequency analysis of the AE signal is required 

and to help determine the predominant frequency band of AE sources for noise 

discrimination and selection of a suitable lower cost, general purpose AE sensor. In high 

fidelity applications, wideband sensors can detect various AE wave modes to provide 

more information about the AE source and distance of the AE event. 
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Table 3.2. Model Related Specifications (PCA 2002) 
Specification Sensor Model 

R6I R15I R30I R50I WDI 

Sensor drive 
capability  
(w/RG-58 AU 
cable)  

≤ 3000 ft.  
(1000 m)  

≤ 1000 ft.  
(300 m)  

≤ 500 ft.  
(160 m)  

≤ 300 ft.  
(100 m)  

≤300 ft.  

(100 m)  

Pre-amplification 40 dB 40 dB 40 dB 40 dB 40 dB 

Peak sensitivity  
Ref V/m/s)/[Ref 
V/mbar]  

120† [-26]*  
 

109† [-24.5]*  
109[-22] 

98† [-24]*  
 

86† [-28]*  
 

87† [-28]*  
96 [-25] 

Operating 
frequency range 
(kHz)  
 

40–100  
 

70–200  
80-200 

125–450  
 

300–550  
 

100–1000  
200-900 

Resonant 
frequency  

(kHz)
1 
 

50† [90]*  
 

125† [153]*  
75[150] 

225† 
[350]*  
 

320† 
[500]*  
 

125† 
[500]*  
 

 † Denotes response to plane waves (angle of incidence normal to face of sensor). 
 * Denotes response to surface waves (angle of incidence transverse or parallel to face of 
sensor).  
 
 

The R15I-AST and WDI-AST sensors are shown in Figure 3.2. 

 
Figure 3.2. AE sensors and 0.3 mm lead pencil. 
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3.4 USAGE OF COUPLANT 

A couplant applied between surface of test object and sensitive face of an AE-

sensor reduces the transmission losses of elastic wave energy entering the AE-sensor, 

effectively increasing the sensitivity of the sensor. A couplant should be selected under 

consideration of the environment (e.g. temperature, pressure, composition of atmosphere 

or liquid environment). Most important a couplant should be chemically compatible to 

the test object’s surface (e.g. not corroding). A couplant should be applied with the 

thinnest practical layer. No voids or entrapped air inclusions should be present. Thick 

layers of couplant or unevenness of it can reduce the sensitivity of an AE-sensor. 

3.5 PREAMPLIFIER 

The piezoelectric material in the AE sensor transforms the signal to a voltage. 

Since the magnitude of the voltage is very small, a preamplifier is required to amplify the 

voltage to a more suitable range. Usually, the preamplifier is mounted integral in R15I-

AST and WDI-AST sensors. 

3.6 AE DATA ACQUISITION 

After the preamplifier, the AE signal is transmitted to the AE data acquisition 

system by a cable. The data acquisition system can filter (eliminate unwanted signals or 

frequencies), or amplify the signals. It will also record, and organize the AE data. Most of 

the time data acquisition software can instantly plot graphs and analyze the data, which is 

helpful for inspectors to understand what is happening during the test. 
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3.7 TESTING FACILITY   

Most of the experiments were conducted in the Structural Engineering Laboratory 

at the University of South Carolina, Columbia Campus. The testing machines used in the 

program is- 

Universal Testing Machine 810: The machine was manufactured by Satec Systems, Inc. 

(Figure 3.3). It has hydraulic wedge grip mechanism with 600 kips maximum capacity 

for tension loading. 

 

Figure 3.3. MTS 810 machine. 
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CHAPTER 4 

SOURCE CHARACTERIZATION OF ACOUSTIC EMISSION DURING 

FATIGUE CRACK PROPAGATION IN STEEL BRIDGE MATERIAL 

The acoustic emission (AE) technique is widely used for structural health 

monitoring and assessment. Prognosis and assessment of fatigue crack growth in steel 

bridges depend on proper collection and interpretation of the AE signals. AE sensors are 

not only sensitive to cracks but also mechanical noise generated from grating. Therefore, 

extraction of the AE data associated with fatigue crack extension is key to successful 

implementation for structural health monitoring. Previous research has shown that plastic 

deformation at the crack tip is the primary source of acoustic emission in ductile 

materials such as steel, while other studies have reported that non-metallic inclusions in 

steel are the main source of acoustic emission. There is no clear consensus about the 

source mechanism of AE during fatigue crack growth in steel. The work described here is 

focused on characterization of AE sources based on b-value analysis and subsequent 

fractographic observations through scanning electronic microscope (SEM). Fractographic 

and b-value analysis show that both ductile and brittle failure mechanisms are present in 

fatigue crack propagation. Brittle mechanisms produce highly energetic AE events and 

ductile mechanisms produce relatively less energetic AE events. 

  



www.manaraa.com

 

36 
 

4.1 INTRODUCTION 

Acoustic emission (AE) is defined as the elastic waves produced by the sudden 

redistribution of the stress field near the crack tip by localized damage in the material 

(ASNT 2005). Plastic deformation, crack initiation, and crack extension are possible 

causes of this damage (ASNT 2005, Hossain et al. 2012, Hossain et al. 2013). Damaging 

phenomena can be broadly classified as ductile or brittle fracture mechanisms. Extensive 

experimental studies (Lin et al. 1987, McMahon and Cohen 1965, Thompson and Knott 

1993, ASNT 2005, Garrison and Moody 1987, Hossain et al. 2012, Hossain et al. 2013, 

Ohira and Pao 1986, Ruggieri 2004) of macro and micro-fracture mechanisms have 

resulted in an understanding of two distinct failure processes. The first is broadly referred 

to as ductile and is characterized by relatively high energy, a high level of macro-

plasticity, and a dull appearance of the fracture surface. Fracture processes that require 

much less energy, produce bright, light-reactive fracture surfaces, and are accompanied 

by little or no plasticity are commonly referred to as brittle. Ductile fracture mechanisms 

are associated with plastic deformation, disbonding inclusions, microvoid nucleation at 

the second phase particles or at inclusions as illustrated in Figure 4.1 (ASNT 2005, 

Garrison and Moody 1987, Hossain et al. 2012, Hossain et al. 2013, Ohira and Pao 1986, 

Ruggieri 2004), and microvoid coalescence. Several studies have shown that micro-voids 

are formed ahead of the fracture surfaces in steel (Beachem 1963, Bluhm 1966, Gurland 

and Plateau 1963, Liu 1968, Puttick 1959, Rogers 1960, Tipper 1949). Intense 

deformations enlarge the micro-voids, and nucleate further micro-voids at precipitate 

interfaces (in the ligaments between the voids) (ASNT 2005, Hossain et al. 2013, Puttick 

1959, Tipper 1949). Further load cycles cause shearing of the ligaments between micro-
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voids, thus leading to macro-scopic crack growth. Earlier studies demonstrated the key 

role of micro-voids during crack propagation associated with ductile fracture in steel 

(Puttick 1959, Tipper 1949). The most likely mechanism is the fracture of inclusions or 

their de-cohesions from the matrix as the plastic zone passes through them (ASNT 2005). 

Upon increased plastic deformation, this internal crack progresses until sufficient loss of 

cross-sectional area leads to final failure of the specimen by a plastic collapse mechanism 

of the remaining ligament. Therefore ductile fracture in steels is the fracture by the 

growth of holes (McClintock 1968).  

Ductile fracture by internal necking of cavities (Thomason 1968), is caused by the 

large growth and coalescence of microscopic voids (Rice 1969) and is via the nucleation 

and growth of voids (Gurson 1977). Hence ductile fracture by void growth and 

coalescence involves three stages: microvoid nucleation, void growth, and void 

coalescence (Bates 1984, Gladman 1997, Thomason 1990, Thomason 1998).  

Voids might nucleate at cleaved particles (Cox 1974, Gladman 1971) or by de-

cohesion of the interfaces of the second phase particles (MnS, carbide etc.).  Smaller 

particles require higher applied stresses for de-cohesion than larger ones (Argon and Im 

1975, Argon et al. 1975, Beachem 1975). Bates (1984) showed that carbides play a 

critical role in brittle fracture mechanisms. Stress tri-axiality has a dramatic effect on void 

growth type and therefore on strain to fracture (Bridgman 1952) which causes some 

volumetric growth (Gladman 1997, Thomason 1998) and therefore significantly lowers 

the strain to rupture. Void coalescence is a process involving a localized internal necking 

of the intervoid material (Thomason 1981). The final stages of this process are associated 
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with failure of the sub-micron intervoid ligament by shearing along crystallographic 

planes or by micro-cleavage (Cox 1974, Rogers 1960). 

Previous studies have shown that a dislocation pile-up at an obstacle, such as a 

grain carbide interface, can cleave a grain boundary carbide and thus initiate a micro-

crack (Lin et al. 1987, McMahon and Cohen 1965, Thompson and Knott 1993), which is 

associated with brittle fracture mechanisms. Some degree of plastic deformation in a 

ferrite grain is necessary to fracture a neighboring carbide (Lin et al. 1987). The number 

of cracked carbides increases with increasing applied strain (ASNT 2005). Indeed the 

number and intensity of dislocation pile-ups increases with plastic straining and hence the 

stresses required to generate a micro-crack decrease (Gurland 1972).  

 
Figure 4.1. Sequence of micro-mechanisms: (a) void nucleation and growth (Ruggieri 

2004); (b) disbonding at inclusion-to-matrix interfaces; (c) void growth at interface and 
plastic deformation between adjacent voids; (d) nucleation of additional microvoids at 

precipitate interfaces;and (e) coalescence of microvoids resulting in a ductile crack 
(redrawn after ASNT 2005). 

Exactly how these two mechanisms take place on a micro-scale and produce 

acoustic emission (Figure 4.2) has been an item of interest for experimental research over 

the last several decades. Many of the earlier studies were hampered by a lack of 

experimental resources, and none of the studies showed a clear linkage between failure 
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mechanisms in A572 Grade 50 steel and characteristics of the associated acoustic 

emission.  This study builds upon previous work, and critically examines micro-

mechanisms of AE sources during fatigue crack propagation in steel material based on 

the fractographic examinations of the fractured surface through scanning electronic 

microscopy (SEM) and b-value analysis.  

 

Figure 4.2. Schematic of acoustic emission process. 

 

4.2 SOURCE MECHANISMS AT THE M ICRO LEVEL 

Ductile Mechanisms:  

Thomason (1993) studied the details of the coalescence phenomenon which is 

considered the final stage of ductile failure mechanisms and showed incipient void 

coalescence leading to an instantaneous change from incompressible to dilatational 

plasticity. The condition for the onset of coalescence in a plane strain case has the 

following form:   

 (σIc- σI) εIc = 0 (4.1) 
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where Icσ  is the plastic limit-load stress, Iσ is the maximum principal stress, and Icε& is 

the maximum principal strain rate across an intervoid matrix neck. If voids are considered 

as cylindrical then Icσ  can be represented by the following empirical equation 

(Thomason 1998): 

 )91.043.1(2 6/1 −⋅= −fkIcσ  (4.2) 

where k is the maximum shear stress, k = mI σσ − , [( 3/)( 321 σσσσ ++=m = mean 

stress] and f is a void volume ratio. Thus a micro-crack extension occurs when the 

condition of equation (4.1) is met. The material rate of hardening in the intervoid matrix 

approaching ductile fracture is reduced to a very low level and in most cases microvoids 

do not show significant growth before the onset of coalescence (Thomason 1998). 

However, if constraint is very high and if very few void nucleation cites are present then 

volumetric void growth can be very strong.  

Huang et al. (1991) analyzed a single spherical void in elastic-plastic materials 

under a remote stress field and showed that a complex interaction of elasticity and plastic 

yielding can lead to a “cavitation instability", if the stresses in the material surrounding 

the void are sufficiently high so that the work produced by these stresses to expand the 

void is less than the energy released by such expansion. An analogy can be drawn 

between the above analysis of the cavitation instability and the energy condition of 

Griffith (1924) for unstable crack growth.  
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Brittle Mechanisms: 

A significant research effort has been made in understanding brittle crack growth 

mechanisms since Griffith's day (Griffith 1924). A dislocation may pile-up at an obstacle, 

such as a grain carbide interface, splitting the grain boundary and thus initiating a micro-

crack (Lin et al. 1987, McMahon and Cohen 1965, Thompson and Knott 1993). Thus 

some degree of plastic deformation in a ferrite grain is always necessary to fracture a 

neighboring carbide (Lin et al. 1987), which may require several load cycles. The stresses 

required to generate a micro-crack can be written as follows (Hahn 1959): 

 na/4.4 γτ ⋅=  (4.3) 

 naK /γσ ⋅=  (4.4) 

where τ and σ are shear and normal stresses accordingly, γ is an effective surface energy, 

n is the number of dislocations piled up against a grain boundary, a is the atomic spacing, 

and K is a coefficient depending on the arrangement of the dislocation pile-up (K = 2.7 

for Orowan model; K = 5.3 for Bullough model; or K = 2.0 for Cottrell model according 

to Hahn et al. 1959). Equations (4.3) and (4.4) suggest that the number of cracked 

carbides increases with increasing applied strain. Indeed the number and intensity of 

dislocation pile-ups increases with plastic straining and hence the stresses required for the 

generation of a micro-crack decrease. This point has been supported by experimental 

observations (Gurland 1972). A micro-crack in a cleaved carbide can advance if the 

following condition is met: Fn σσ ≥ , where nσ  is a normal stress acting across the grain-

carbide interface and Fσ is a fracture or cleavage stress.  
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Smith (1966) derived an equation for the fracture stress of a carbide-ferrite 

interface. Based on Smith's analysis, Lin et al. (1987) obtained a similar equation for the 

fracture stress of a ferrite-ferrite interface. Both equations are shown below.    

 )}1(/{ 2νγπσ −= ccf
cf
F dE  (4.5) 

 )}1(/{ 2νγπσ −= gff
ff

F dE  (4.6) 

where cf
Fσ and ff

Fσ are the fracture or cleavage stresses of a carbide-ferrite and ferrite-

ferrite interfaces, cfγ  and ffγ are the effective surface energies of a carbide-ferrite and a 

ferrite-ferrite interface; dc and dg are carbide and ferrite grain sizes, E is the elasticity 

modulus, and ν is Poisson's ratio. Ritchie et al. (1973) showed that the condition Fn σσ ≥  

has to be satisfied over a distance of two grain sizes ahead of the crack tip for the fracture 

advance to take place. This is commonly called the critical distance idea (Thompson and 

Knott 1993). Later Curry and Knott (1978) proposed a statistical analysis of eligible 

particles that can be found within the critical distance. An eligible particle is a cracked 

particle with the crack length equal to or greater than the critical one. Their conclusion 

was that a very small percentage of large particles have a predominant influence on the 

fracture resistance.  

4.3 CT SPECIMEN TESTING AND AE MONITORING 

To investigate the potential sources of  acoustic emission due to fatigue crack 

extension, a compact tension specimen of ASTM A572 Grade 50 structural steel was 

utilized for acoustic emission monitoring during constant amplitude cyclic loading 

(Figure 4.3). The chemical composition is given in Table 4.1. The effective width of the 
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CT specimen is 241.3 mm (9.5 inch) and the thickness is 12.7 mm (0.5 inch), with initial 

crack length of 82.6 mm (3.25 inch).  

Figure 4.3. Compact tension (CT) specimen 
 

 

   
(a) schematic    

                                                   

   
 (b) photograph during testing 
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A clip gage, Vishay crack propagation gages, and a microscopic video camera 

were used to monitor crack propagation. An MTS 810 test frame was used to apply cyclic 

load, with a maximum applied load of 65 kN (14.6 kips) with a load ratio (R) of 0.1 and a 

frequency of 2 Hz. Two R15I-AST and six wideband (WDI) sensors (Mistras Group, 

Inc.) were used to collect AE signals. Vacuum grease was used as the couplant and 

magnetic holders were used to maintain constant pressure. The AE signals have internal 

pre-amplification of 40 dB. The test threshold was 45 dB and signals were stored and 

displayed with a Sensor Highway II data acquisition system having AEwin software. 

 
Table 4.1. Chemical Composition of ASTM A572 Grade 50 Steel 

 
Element Weight % 

Iron (Fe)  Base metal 

Manganese (Mn)  1.35 (max) 

Silicon (Si)           0.30% (max) 

Carbon (C)         0.23% (max) 

Copper (Cu)       0.20% (min) 

Sulfur (S)             0.05% 

Phosphorus (P)   0.04% 

Filtering Approach: 

Signal identification and data filtering is a necessary step for acoustic emission 

monitoring. In addition to plastic deformation and crack extension, AE sensors are also 

sensitive to unrelated noise. Noise mainly arises from grating between fracture surfaces 

and abrasion in the load train. Grating emission occurs due to friction between the 

fractured surfaces at crack closure and crack opening. To minimize grating emission, AE 

collected below 80% of the maximum load was eliminated (Hossain et al. 2012, Hossain 

et al. 2013, Yu et al. 2011).  
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Specialized grating emission tests were performed to understand the 

characteristics of noise due to grating. In these tests, the magnitude of the cyclic load was 

reduced so as to be insufficient for crack growth. A typical waveform from grating 

emission is shown in Figure 4.5(a). Pencil lead break tests were also performed to 

understand the characteristics of genuine hits [Figure 4.5(b)].

typical parameters include amplitude, rise time, duration, and emission counts. 

waveform from grating emission has long rise time, long duration, and poorly defined 

peak amplitude. The waveform from crack related events is characterized by a relatively 

clean front-end, short rise time, short duration, and high amplitude. Based on the 

characteristics of waveforms, 

mechanical noise. Swansong II filter

specific characteristics of unwanted hits (longer duration and low amplitude)

arising from sliding or mechanical rubbing typically have 

lower amplitude.  

 (a) grating emission
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Specialized grating emission tests were performed to understand the 

characteristics of noise due to grating. In these tests, the magnitude of the cyclic load was 

as to be insufficient for crack growth. A typical waveform from grating 

emission is shown in Figure 4.5(a). Pencil lead break tests were also performed to 

understand the characteristics of genuine hits [Figure 4.5(b)]. In a burst-type waveform, 

rameters include amplitude, rise time, duration, and emission counts. 

waveform from grating emission has long rise time, long duration, and poorly defined 

peak amplitude. The waveform from crack related events is characterized by a relatively 

end, short rise time, short duration, and high amplitude. Based on the 

characteristics of waveforms, Swansong II filtering was also employed to minimize 

mechanical noise. Swansong II filtering utilizes a technique which takes advantage of 

cteristics of unwanted hits (longer duration and low amplitude)

arising from sliding or mechanical rubbing typically have relatively longer 

grating emission                                                      (b) pencil lead break test
 

Figure 4.4. Typical waveforms 

  

Specialized grating emission tests were performed to understand the 

characteristics of noise due to grating. In these tests, the magnitude of the cyclic load was 

as to be insufficient for crack growth. A typical waveform from grating 

emission is shown in Figure 4.5(a). Pencil lead break tests were also performed to 

type waveform, 

rameters include amplitude, rise time, duration, and emission counts. The 

waveform from grating emission has long rise time, long duration, and poorly defined 

peak amplitude. The waveform from crack related events is characterized by a relatively 

end, short rise time, short duration, and high amplitude. Based on the 

Swansong II filtering was also employed to minimize 

a technique which takes advantage of 

cteristics of unwanted hits (longer duration and low amplitude), as AE hits 

 duration and 

pencil lead break test 
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Fatigue Crack Growth Rate:  

A clip gage was used to record the crack mouth opening displacement (CMOD), 

‘d’ (shown in Figure 4.3) and then the ASTM (2006) empirical expression was used to 

calculate the crack length, ‘a’ (from the center of the loading line, Figure 4.3). The 

empirical expression is: 

 )6.21439.121482.2364.186695.4001.1W(a 5432
xxxxx uuuuu −+−+−=         (4.7) 

 [ ] 1

max 1/
−

+⋅⋅= PdtEux
       (4.8) 

where the effective width of the CT specimen (W) is 241.3 mm (9.5 inch) as shown in 

Figure 4.3 and the specimen thickness t is 12.7 mm (0.5 inch); the Young’s modulus (E) 

of ASTM A572 G50 steel is 200 GPa (29000 ksi) and Pmax is the peak of the cyclic load. 

The stress intensity range is determined by using the following equation (ASTM 2006):   

 572.1432.1364.4886.0(
)1(

)2.( 32
2/32/1

ααα
α
α

−+−+
−
+∆

=∆
tw

P
K

 

(4.9) 

where ∆P= Pmax-Pmin and α is equal to a/W. By using equation (6.14), the calculated 

critical crack length, ac = 55.4 mm (2.18 inch) (from initial crack tip) when the maximum 

stress intensity at the crack tip reaches to 128 MPa√m (116.5 ksi√in) (Stephens et al. 

1982, Yu et al. 2011).  

 As the stress intensity range approaches the critical value of fracture toughness 

(Kc), the fatigue crack growth becomes much faster than that predicted by Paris law 

(1961). Therefore, ∆K is the driving force for crack propagation, and it includes the effect 

of the changing crack length and cyclic loading. AE transducers are usually made from 

piezoelectric slabs and have a resonant behavior; their sensitivity varies with frequency 
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(ft) and is usually greatest in the range from 0.1 to 1.0 MHz (ASNT 2005). Neither the 

static surface strains nor very high frequency components are sensed. If the crack extends 

rapidly and then stops so that its growth time is about equal to 1/ft, then the emitted wave 

fronts are dominated by frequency components in the detectable range (ASNT 2005).  

Therefore, the detectability of crack growth events with the acoustic emission 

method depends on the temporal nature of the source.  If the source operates slowly then 

it is likely no signal will be detected. But if the crack extends rapidly and then stops so 

that its extension time is about equal to 1/ft, the emitted wave forms are dominated by 

frequency components in the detectable range. Hence, the time-dependent nature of the 

source mechanism controls the potential detectability. 

4.4 RESULTS AND DISCUSSION 

Acoustic Emission Data: 

 Local crack extension was monitored using crack propagation gages (CPAs) in 

combination with a clip gage to assess the AE events associated with fatigue crack 

extension. CPAs consist of twenty breakable metallic grid lines (0.02 inches apart) 

having known electrical resistance. In the majority of the cases (78%), AE hits were not 

recorded due to wire breakage. This suggests that AE is generally not produced by 

breakage of the grid line itself. This study is focused on stable fatigue crack growth 

(Stage II) of in-service steel bridges, so stage I (crack nucleation) and stage III (unstable 

crack growth, leading to catastrophic failure) are not discussed in detail.  
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To enable the discussion that follows, the stages of crack growth are defined as 

follows: 

• Early stage II:  Stress intensity range (∆K) is in the range of 57 MPa√m 

(51.9 ksi√in) (corresponding to the initial crack length) to 60 MPa√m (54.6 

ksi√in). 

• Mid stage II:  Stress intensity range (∆K) is the range of 60 (54.6 ksi√in) to 

95 MPa√m (81.9 ksi√in). 

• Late stage II: ∆K is in the range of 95 (81.9 ksi√in) to 128 MPa√m (116.5 

ksi√in) near the critical level fatigue crack where the fatigue crack is much 

faster than calculated using the Paris equation. 

• Early stage III: Stress intensity range (∆K) is between 128 MPa√m (116.5 

ksi√in) and 135 MPa√m (122.9 ksi√in) (end of the test).  

The total number of AE hits recorded throughout the test was 312,527. By visual 

inspection of the waveforms, many of the AE hits are considered as hits associated with 

the grating or friction between the fracture surfaces during opening and closure of the 

crack. In a previous study it was presumed that fatigue crack extension occurs within 

80% of the peak load (Yu et al. 2011). To eliminate hits associated with the grating 

emissions, hits occurring below 80% of the peak load were filtered.  Less than 1% of the 

hits remained after applying this load based filter along with the Swansong II filter 

previously described [Figure 4.5].  
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Figure 4.5. AE amplitude distribution after filtering below 80% of maximum load and 
Swansong II. 

 

 
(a) AE hits versus time 

 
(b) AE hits versus stress intensity range 
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In early stage II [stress intensity range (∆K) less than 60 MPa√m (54.6 ksi√in)], 

no AE hits were recorded due to fatigue crack extension. This observation is based on the 

data received from the Vishay crack propagation gages. Relatively low amplitude AE 

events (in the range of 45 to 65 dB) were recorded throughout early stage II. This 

observation indicates that the majority of AE hits in this stage were associated with 

ductile mechanisms. During ductile mechanisms energy release occurs in step by step 

processes (inclusion disbanding, micro-void generation, and coalescence) over a wide 

span of time. This is in contrast to the later stages where the brittle fracture mechanisms 

dominate and produce high amplitude acoustic emission.  

In mid stage II [∆K in the range of 60 (54.6 ksi√in) to 95 MPa√m (81.9 ksi√in)], 

high amplitude AE events in addition to low amplitude AE events were observed with 

increasing stress intensity range. Relatively high amplitude hits in the range of 70 to 95 

dB accompanied by wire breakage of the Vishay crack gages were observed, which may 

be associated with brittle crack extension. In late stage II [∆K in the range of 95 MPa√m 

(81.9 ksi√in) to 128 MPa√m (116.5 ksi√in)] and also in early stage III [∆K greater than 

128 MPa√m (116.5 ksi√in)], the stress intensity range (∆K) is relatively high and 

dramatically increases, leading to unstable crack growth. Within a very short period of 

time (around one thousand seconds), ∆K is changed from 95 (81.9 ksi√in) to 128 MPa√m 

(116.5 ksi√in) near the critical level fatigue crack. 

The average crack growth rate obtained from the test varied from 2.5 to 42 

µm/cycle. The energy release during crack growth or strain energy release rate per unit 

area of crack growth is EKG /2∆=∆  or EK /)1( 22 ∆−ν  for the plane stress and plane 
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strain conditions, respectively (Griffith 1924). According to the above expressions the 

energy release should increase with increasing numbers of load cycles and therefore 

should produce higher amplitude acoustic emission. The same trend can be found in 

Figure 4.5(a), but it can be seen that high amplitude AE hits are distributed throughout 

the test, and relatively high amplitude AE hits are found in mid stage II [∆K between 60 

(54.6 ksi√in) to 95 MPa√m (81.9 ksi√in)]. In early stage II (delta K between 57 to 60 

MPa√m), the amplitude of the AE hits was smaller and no high amplitude AE hits were 

observed. However, with increasing ∆K, the frequency of high amplitude AE events 

increased which suggests that with increasing ∆K, the chance of brittle fracture 

mechanisms is increased. In mid stage II [∆K between 60 (54.6 ksi√in) to 95 MPa√m 

(81.9 ksi√in)] the highly energetic AE hits have amplitude in the range of 70 to 95 dB 

[Figure 4.5 (b)]. However, throughout the fatigue test, most of the AE hits have 

amplitude in the range of 45 to 65 dB which suggests the majority of the AE events are 

less energetic. Therefore, it takes several hundred loading cycles to produce a brittle 

fracture and hence produce a high amplitude AE event. In the region at the end of stage II 

and the beginning of stage III, very few energetic events were observed. In this region the 

stress intensity range quickly increased, so hypothetically high amplitude AE events 

should increase, however this was not observed in the AE data. The reason may be the 

decrease in the material resilient at this region and the crack propagates mainly via 

transgranular mechanisms. 
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b-value Analysis: 

There can be many sources of AE, with one of the most important being micro-

cracking as far as brittle failure is concerned. This has motivated non-destructive testing 

(NDT) specialists to develop and refine the AE technique such that it can serve as an 

NDT tool for monitoring and understanding the mechanisms of dynamic processes and 

also to forewarn impending failure in engineering materials. Among various parameters, 

the most significant one is the b-value which is derived from the amplitude distribution 

data of AE. It represents the 'scaling of magnitude distribution' of AE, and is a measure of 

the relative numbers of small and large AE which are signatures of localized failures in 

material. 

b-value is an effective tool to characterize AE sources. Pollock (1981) suggested 

the “average AE amplitudes”, for calculation of b-values: 

 

10ln

20
0 b

AA +=  
(4.10) 

where A  = average amplitude,0A = threshold amplitude, and b = the calculated b-value. 

The plot of b-value vs. stress intensity range is a potentially promising way to analyze 

source mechanisms of AE during fatigue crack growth. The advantages of this method 

are that it is easy to compute, can be performed in real time, and is easy to understand. It 

has been shown by Pollock (1981) that the b-value is unique for each failure mechanism, 

and the log scale will remove the effect of wave attenuation. Therefore, the b value will 

not change with the distance between source to sensor, if all signals are attenuated 
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equally (Pollock 1981). The b-value can change during a test, which can be explained as 

the transition from one mechanism to another.  

Pollock (1981) also stated that commonly the b-value range is between 0.7-1.5, 

but it could be as low as 0.4 or as high as 4.0. The lower values are usually associated 

with discontinuous crack growth in high-strength brittle metals, whereas the high values 

can be from plastic zone growth prior to crack extension.  

The discrete cleavage events that occur during stage II fatigue crack growth 

should have a random distribution along the crack propagation path. Total fracture 

surfaces associated with cleavage fracture can then be subdivided into discrete 

increments based on the b-value. The smallest discrete increment which can produce 

detectable acoustic emission can then be considered as one “grain” (Pollock 2010).  

AE data was processed using Matlab code (MATLAB 2010) to carry out a b-value 

analysis. AE data was grouped as Group I (full data set without filtering) and Group II 

(AE data filtered below 80% of the maximum load and combined with Swansong II). 

Then the b-values versus stress intensity range were plotted for Group I (all channels 

combined as well as for the individual channels). For Group II all channels were plotted 

together as there was not enough data to plot for individual channels. For a single b-value 

calculation, one hundred data points (hits) were used. After employing load filtering and 

Swangsong II filtering, around two hundred data points per channel remained and 

therefore it was not meaningful to plot only two points per channel which eventually 

results in a straight line and does not provide any insight related to the sources.   
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Using different numbers of AE hits can significantly affect the calculated b-value. 

Using 100 data points for calculation, the resulting average b-values are about 0.176 for 

Group I and 0.0655 for Group II (over the entire test)  for all channels combined. This 

implies that the filtering process significantly affects the b-value. Another conclusion is 

that mechanical noise has higher b-value as it produces relatively low amplitude AE. 

With consideration to the case of in-service steel bridge health monitoring and prognosis, 

AE data may be collected and b-value plotted against stress intensity range to assess the 

AE hits associated with fatigue crack growth.  

Figure 4.6 shows the synchronization between b-value (Group I) and the AE hits 

(raw data, Group I). The b-value is highly fluctuated for Group I. The accuracy of b-value 

depends on meaningful data, sample size, and appropriate methods of calculation.  A 

large number of unfiltered data resulting in the greater error, and sometimes the results 

can not be used to accurate source characterization which describes the rate at which AE 

hits of specified amplitude generate at a given location.   

For each AE hit, the source characterization develops a suite of credible and 

relevant AE scenarios (amplitude) and computes the rate at which each AE hits occur.  
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(a) AE amplitude (raw data) verus stress intensity range 

 

(b) b-value (based on raw AE data) versus stress intensity range 

Figure 4.6. AE amplitude and b-value distribution for raw data. 
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The b-value depends on the amplitude of AE hits, and lower b-values as shown in 

Figure 4.6 represent higher amplitude AE hits and vice-versa, which involves filtering 

AE hits in a selective manner.  Figure 4.6a presents AE hits obtained from the fatigue 

test, and Figure 4.6b represents the corresponding b-value to aid in assessment of the 

fracture process. In mid-Stage II, the b-value is found to range from 0.4 to 10. The higher 

b-value indicates large number of relatively low amplitude AE hits. Friction between 

fracture surface and mechanical noises may contribute these large number of low 

amplitude AE hits. In the middle of Stage II, b-value drops below 1.0 several times and it 

is as low as 0.4, which may be associated with brittle fracture mechanisms.  Then 

relatively large number of high amplitude banded AE hits which may be associated with 

friction between fracture surfaces; most of these hits are eliminated after employing load 

filter and Swansong II filter. And corresponding b-value decreases with increase in stress 

intensity range to attain values ≈ 1.00 in late Stage II and beyond. Therefore conflict 

between the friction emission and brittle fracture is taken place in some cases. Hence 

source characterization based on b-value depends on proper data identification as well as 

proper data filter. b-value may not be directly applied for source characterization prior 

proper data filtering.  

Figure 4.7 shows the filtered AE hits along with the resulting b-value based on the 

filtered AE data. Early Stage II may be related to crack nucleation and corresponding b-

value is in the range of 4.0, mid-Stage II has almost constant b-value ≈ 0.4, late Stage II 

demonstrates and significant rise in the b-value followed by a drop and then another rise, 

and finally early stage III demonstrates high b-value, where crack may grow via 
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transgranular fracture. Hence brittle fracture frequently occurs in the middle Stage II and 

the corresponding b-value is the lowest and it is in the range of 0.4.  

However it is difficult to make precise decisions based on the highly fluctuated 

diagram of the b-value for the raw AE data (Group I, Figure 4.6), but for the filtered AE 

data (Group II, Figure 4.7) the fluctuation in b-value is less and the pattern is clearer in 

the early cycles when the cracks nucleate. Higher b-values indicate smaller amplitude AE 

which may be produced by ductile failure mechanisms that involve plastic deformation, 

inclusion disbonding, microvoid generation, and coalescence. The presence of a large 

number of concentrated micro-cracks in Group II (filtered data) creates a clear pattern of 

b-value (Figure 4.7). The dramatic rise in b-value occurs where there is very little high 

amplitude and large number of small amplitude AE data as shown in the late Stage II.  

However, once high amplitude AE hits are detected, the b-value diagram is more 

fluctuating which suggests that the high amplitude AE sources are random and more 

scattered along the crack line in late Stage II. This may imply that the analysis of the b-

value is meaningful for understanding the AE source mechanisms as it provides 

information between the micro-cracking beginning up to the stage where cleavage 

fractures frequently occur by brittle failure mechanisms in the middle of Stage II as 

shown in Figure 4.7. In the middle Stage II, b-value is the lowest and it is in the range of 

0.4. Therefore the conclusion can be drawn that the small cluster region known as grain 

is associated with brittle fracture mechanisms when b-value attain to 0.4. 
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Figure 4.7. AE amplitude (filtered data) and b-value (filtered data) versus stress intensity 

range. 

The trend of the b-values is shown for each wide band sensor channel (Channels 

1-6) for raw AE data (Group I) in Figure 4.8 and also for each resonant sensor (Channel 

7-8) for the raw AE data in Figure 4.9 which show the b-value fluctuates and several 

times drops below 1.0. However, Figures 4.8 and 4.9 imply that a single channel may not 

adequate to characterize AE sources and also indicate that filtering is critical to the 

evaluation of the data. Channel 4 seems to be out of step with the other channels in Stage 

II [stress intensity range ∆K ≈ 73 (66.4 ksi√in)] and beyond, may be due to the improper 

attachment or de-attachment of the sensor and lack of proper contact with the plate. 

Therefore for accurate source characterization, a sufficient number of datasets, sample 

size and number of AE sensors are obligatory. Optimum number of sensors will minimize 

this error and will give more accurate b-value prediction as well as the accurate AE 

sources and associated AE signals. The b-values as presented in Figures 4.8 and 4.9 for 

unfiltered data, which contain a large number of small amplitude AE hits, rarely drops 
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below 1.0. Thereafter it can be concluded that AE data from individual channels may not 

adequately identify source mechanisms based on the b

Figure 4.8. b-value versus stress intensity range 
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below 1.0. Thereafter it can be concluded that AE data from individual channels may not 

adequately identify source mechanisms based on the b-value.  

versus stress intensity range for WDI sensors (raw data, Group I)

below 1.0. Thereafter it can be concluded that AE data from individual channels may not 

(raw data, Group I). 
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Based on the relationship discussed in the previous sections between the 

and the ductile and brittle 

amplitude AE events may be associated with cleavage 

b-value arises due to a large number of small AE hits (or events) representing new micro

voids formation and slow crack growth, whereas a low b

unstable crack growth accompanied by relatively high

shown in Figures 4.8 and 4.9. Thus there are good prospects for making a quantitative 

diagnosis of the fracture process in the test material under stress on the basis of AE 

amplitude information in terms of b

Figure 4.9. b-value versus stress intensity range 
 

However, the method used for the determination of b

selection of the amplitude or magnitude limits of the 'linear range' of the cumulative 

frequency distribution data of AE is critical. The method used in this study for calculating 

the b-value is the average amplitude for 100 hits and plotted against the midpoint of these 

hits. This eliminates effort for choosing optimum amplitude range for dete
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he relationship discussed in the previous sections between the 

and the ductile and brittle failure mechanisms, the minimum b-value suggests high 

amplitude AE events may be associated with cleavage fracture and vice-versa.

value arises due to a large number of small AE hits (or events) representing new micro

voids formation and slow crack growth, whereas a low b-value indicates faster or 

unstable crack growth accompanied by relatively high amplitude AE in large numbers as 

shown in Figures 4.8 and 4.9. Thus there are good prospects for making a quantitative 

diagnosis of the fracture process in the test material under stress on the basis of AE 

amplitude information in terms of b-value.  

versus stress intensity range for R15 sensors (raw data, Group I)

However, the method used for the determination of b-value is important, since 

selection of the amplitude or magnitude limits of the 'linear range' of the cumulative 

quency distribution data of AE is critical. The method used in this study for calculating 

value is the average amplitude for 100 hits and plotted against the midpoint of these 

hits. This eliminates effort for choosing optimum amplitude range for dete

he relationship discussed in the previous sections between the b-value 

value suggests high 

versa. A higher 

value arises due to a large number of small AE hits (or events) representing new micro-

value indicates faster or 

amplitude AE in large numbers as 

shown in Figures 4.8 and 4.9. Thus there are good prospects for making a quantitative 

diagnosis of the fracture process in the test material under stress on the basis of AE 

(raw data, Group I). 

value is important, since 

selection of the amplitude or magnitude limits of the 'linear range' of the cumulative 

quency distribution data of AE is critical. The method used in this study for calculating 

value is the average amplitude for 100 hits and plotted against the midpoint of these 

hits. This eliminates effort for choosing optimum amplitude range for determining b-
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value which is the slope of frequency distribution of a group of AE hits. This implies that 

the optimum grouping of the amplitude significantly affects the b-value.   

All the individual mechanisms (inclusion, microvoids and coalescence) during 

ductile failure can produce small amplitude AE signals which contribute to AE data 

depending on the hit. In contrast to ductile mechanisms, cleavage fracture is a very 

uncertain phenomena depending on the strain rate as well as material properties. 

Cleavage fracture frequently occurs at higher strain rates during stable fatigue crack 

growth.  For cleavage or intra-granular fracture of ferrite grains, initially micro-cracks 

nucleate at iron carbide particles on ferrite particles. Carbide particles help to nucleate 

micro-cracks on ferrite particles. It can be concluded that cleavage fractures frequently 

occur at higher stress if the ferrite grain contains any initial defects during the 

manufacturing process of steel which accelerates the micro-crack nucleation process. 

In the absence of any micro-crack nucleation factors on ferrite grains, there is 

more chance to extend the crack by debonding the matrix between two ferrite grains 

which is known as transgranular cleavage fracture. Figures 4.7 through 4.9 show that 

after around 1,000 seconds the b-value first drops below 1.0 when the corresponding 

stress intensity range is between 60 MPa√m (54.6 ksi√in) to 65 MPa√m (59.2 ksi√in), 

which may be associated with the beginning of brittle fracture mechanisms which 

produce high amplitude acoustic emission. The following conclusion can be drawn that 

the AE hits corresponding to b-value less than 1.0 are associated to brittle mechanisms. 
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Source Characterization with Electron Microscopy:  

As discussed in the previous sections, it is hypothesized that only a small fraction 

(ψ) of the total crack surface is associated with highly emissive mechanisms such as 

trans-granular or inter-granular cleavage. The balance of the fracture, perhaps a large 

majority of it, is created by essentially silent mechanisms such as plastic deformations, 

inclusion disbonding, microvoid generation, and microvoid coalescence. In fatigue crack 

growth as discussed in previous sections, there are two main types of failure mechanisms. 

Ductile mechanisms can be considered as salient failure mechanisms as they produce 

more acoustic emission having small amplitude. In contrast, brittle fracture mechanisms, 

such as cleavage fracture, produce less frequent but higher amplitude acoustic emission.  

The brittle fracture fraction (ψ) is the key descriptor of material emissivity and can be 

assessed by fractographic analysis. 

At the conclusion of fatigue testing, samples were cut (1 and 2 from early Stage 

II, 3 and 4 from mid Stage II, and 5 and 6 from late Stage II) from the fracture surfaces of 

the CT specimen as shown in Figure 4.10 and examined with a Scanning Electronic 

Microscope (SEM). In early Stage II (crack length around 15 mm), the fracture surface 

was dominated by microvoid coalescence [Figure 4.11(a) and (b)]. In mid Stage II (crack 

length around 30 mm) [Figure 4.11(c) and (d)] the fracture surface shows quasi-cleavage 

with some traces of fatigue striations [Figure 4.11(c)]. The striation spacing, 

approximately 1µm, is compatible with the crack growth rate (2.5- 42.4 µm/cycle) 

observed in this stage of the test. The quasi-cleavage appearance persisted to late Stage II 

(crack length around 50 mm) [Figure 4.11(f) and (g)]. Figure 4.11(a) and (b) show micro-

voids and coalescence (separation) which is indicative of ductile failure mechanisms.  
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Figure 4.10. Schematic diagram for the locations of SEM images. 
 

Macroscopic examination of the fracture surface may also permit discrimination 

of the fatigue fractures. The classic feature associated with fatigue crack growth is the 

formation of fatigue striations. The typical appearances of ductile fracture in steel under 

fatigue loading conditions are shown below in Figures 4.11(a), (b) and (d). Figure 

4.11(c), (f) and (g) show the striation-like marking on the fracture surface, cleaved slits, 

and cleavage fracture. Striation-like markings are produced by relative movement (plastic 

deformation) between the two fracture surfaces during cyclic loading. 

The major interest in striations arises from the possibility that they can be used to 

assess the stress on the component during fatigue crack growth. While such marks are 

due to crack extension, likely associated with fatigue crack growth, the mechanism of 

formation of microvoids requires the presence of hard inclusions which plays a key role 

for crack propagation by means of ductile fracture. 
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Figure 4.11. Scanning electron micrographs: (a) sample 1; (b) sample 2; (c) sample 3; (d) 
sample 4; (e) sample 5; (f) sample 6. Legend: yellow arrow = inclusion; blue arrow = 
microvoid; green arrow = separation; red arrow = cleavage fracture; circle = striations. 

 

 

(a)                                                                  (b) 

 

(c)                                                                (d) 

 

(e)                                                           (f) 
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As discussed earlier ductile fracture is normally trans-granular. The typical mode 

of ductile fracture is microvoid generation, and coalescence is the final stage in void 

controlled ductile fracture. Plasticity is localized between the voids. This localized 

deformation leads to final coalescence of voids which leads to complete failure. These 

three sequential steps for fracture by voids are and indicator of ductile fracture. Cleaved 

slits are also found on the cracked surface [Figure 4.11(c), (f) and (g)] which is an 

indicator of the cleavage feature of brittle fracture and hence both mechanisms are 

present in the middle and end stages of fatigue crack behavior. Therefore gradual 

transitions from ductile to mixed mechanisms occur. This observation indicates that a 

ductile failure mode is prominent as the crack grows trans-granularly through the material 

and, in contrast, brittle mechanisms are prominent as the crack extends by means of 

intergranular fracture. 

Unlike cleavage fracture, which is a mechanism driven almost entirely by the 

local tensile stresses, hard inclusions [Figure 4.11(a), (b) and (d)] in the micro-regime 

play a prime role in ductile fracture in a continuum framework. The plastic strains for 

microcrack nucleation are small thereby causing only little damage in the material ahead 

of the internal crack formed in the neck region. More damage ahead of the crack in the 

final stages of microvoid coalescence carries only insignificant stresses and hence 

produce less energetic acoustic emission. However, the complex interplay of the key 

processes (microvoid nucleation, growth, and coalescence) leading to ductile failure 

underlies the need for additional consideration for improved understanding of the entire 

process.  
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Consequently, the kinetics of the (macroscopic) crack extension process during 

ductile fracture can be considered as driven primarily by the growth of microvoids. 

According to Ruggieri (2004), a process zone in the material layer enveloping the 

growing crack for the ductile fracture, must be thick enough to include at least a void to 

nucleate more microcrack. Hence void growth and coalescence in the fracture plane may 

cause the surface tractions in the process zone. Micrographs reveal a negligible degree of 

void growth in material at distances from the crack plane of more than 1-2 times the 

spacing of larger inclusions (i.e., in the material outside the planar layer) as indicated 

previously in Figure 4.1. SEM images [Figure 4.11(d), (e) and (f)] also show the highly 

tortuous (alternate sliding-off) localized path followed by the crack front. However 

macroscopic crack growth follows a simpler planar character.  

According to equations (4.5) and (4.6), the fracture stress of a ferrite-ferrite 

interface is inversely related to the grain size, so the fine grain region represents a 

significant obstacle to an advancing crack. According to ASNT (2005) the ferrite grain 

size for steel is in the range of 11 µm. And a horizontal micro-crack in steel with a ferrite 

grain size of 10 µm, source speed of 1000 ms-1, stress in material about to crack of 500 

MPa, at a distance of 0.04 m from source to sensor can produce a vertical displacement of 

around 2.5×10-11m having a time duration of (~10-5m/103 ms-1) 10 ns. Such a 

displacement signal is readily detectable under laboratory conditions even with narrow 

band transducers. 
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4.5 CONCLUSIONS 

The objective of this work is to investigate and characterize the sources of 

acoustic emission signals in ductile steel parent material during fatigue crack growth. 

This was approached through b-value and fractographic analysis in an attempt to 

distinguish between AE events due to crack extension and other sources. The 

fractographic observations and b-value analysis of a compact tensile specimen made of 

ASTM A572 Grade 50 steel show that silent mechanisms such as microvoid coalescence 

are dominate in major portions of the fractured surface and contribute to generate large 

numbers of relatively small amplitude (around 50 dB) AE signals. Only a small fraction 

of the total crack surface is associated with highly emissive mechanisms such as 

transgranular or intergranular cleavage that may be considered as a key descriptor of 

emissivity in ASTM A572 Grade 50 steel. From the above discussion, the following 

conclusion can be drawn:  

• b-value and fractographic analysis can provide indications of the mechanisms of AE 

during fatigue crack growth in steel bridge material and can aid in the assessment of 

the transition from ductile to ductile-brittle mechanisms. 

• The early stage of fatigue crack growth in ASTM A572 Grade 50 steel is dominated 

by ductile mechanisms. With increasing stress intensity at the crack tip, brittle 

mechanisms (i.e. cleavage fracture) are also found in a small fraction of the total 

crack surface along with ductile mechanisms.  

• Brittle fracture mechanisms produce relatively energetic acoustic emission events. In 

contrast, ductile fracture mechanisms produce relatively small amplitude acoustic 
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emission hits. As stress intensity at the crack tip increases, intergranular cleavage 

fracture becomes more likely, resulting in relatively high amplitude AE. 

• The logarithm of the number of hits is inversely proportional to AE amplitude. For 

high AE amplitudes, the regression analysis results in an approximate b-value of 

unity. This value reflects the brittle nature of the source mechanisms of AE events 

during middle stage II in the stable fatigue crack growth. 

• Brittle fractures and hence the production of energetic acoustic emission events are 

relatively random phenomena and are related to number of different factors (i.e. 

ferrite grain contains initial defects on the crack path, fracture or cleavage stresses of 

a carbide-ferrite and ferrite-ferrite interfaces, ferrite grain sizes, effective surface 

energies of a carbide-ferrite and a ferrite-ferrite interface). Cleavage fractures 

frequently occur at higher strain rates during stable fatigue crack growth when other 

microcrack nucleation factors are available.  
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CHAPTER 5 

ASSESSING ACOUSTIC EMISSION RELATED TO FATIGUE CRACK 

EXTENSION IN STEEL BRIDGE MATERIAL USING DIGITAL IMAGE 

CORRELATION 

Over the past several decades acoustic emission (AE) has been studied for 

applications related to structural health monitoring (SHM) of metallic structures. The 

success of the AE technique for health prognosis of in-service steel bridges depends on 

reliable interpretation of the received AE signals. The emphasis of this chapter is on 

assessment and characterization of AE events associated with fatigue crack growth in 

ASTM A572 grade 50 steel which is widely utilized for steel bridge construction. The 

assessment of AE events associated with fatigue crack behavior was executed through 

monitoring the strain field near the crack tip using digital imaging correlation (DIC). 

Microscopic source characterization was aided by Scanning Electronic Microscopy 

(SEM). DIC offers the potential for providing real-time assessment of AE source 

mechanisms and associated AE hits, and therefore offers advantages over fractrographic 

analysis of SEM images. In contrast, fractographic analysis performed in several cluster 

areas in the fractured surface can provide an overall view of source mechanisms, but 

correlation between SEM and AE events cannot be established in real time. 
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Full-field strain measurement during fatigue crack extension was obtained using 

DIC and strain localizations were found along the slip bands near the crack tip. SEM 

results indicate that both ductile and brittle mechanisms are present in fatigue crack 

growth in the steel material. However, the fracture mechanisms are predominantly ductile 

in the early stage and cleavage fracture is found randomly in the middle and end stages. 

A key finding is that fatigue crack extension does not generally produce readily 

discernible AE events in the early stages, but AE events are found at the middle and end 

stages for the steel bridge material investigated. Throughout the test, AE is mainly 

associated with plastic deformation. For cleavage fracture, small plastic deformation is 

required and hence no strain redistribution is observed. At higher strain rates cleavage 

fractures are predominant, and these are theoretically linked to high amplitude AE events. 

5.1 INTRODUCTION 

The correlation of source mechanisms with AE data is important for prognosis of 

steel structures. Steel bridges are often subjected to fatigue loading and repeated load 

cycles greater than the fatigue limit may initiate micro-cracking in fatigue sensitive 

details (Carroll 2011, Elbert 1971, Ewing and Humfrey 1903). Each load cycle generates 

a plastic zone ahead of the crack tip. As the crack propagates, the initial plastic zone 

progressively expands forming an increasing plastically deformed area ahead of the crack 

tip. This process, which is shown schematically in Figure 5.1 (Carroll 2011), forms the 

basis for the subsequent plasticity-induced crack closure. Initially, many microcracks are 

formed in a random manner prior to the final growth of a crack (Hoshide and Socie 1988, 

Magnin et al. 1985, Ochi et al. 1985). Researchers have been attempting to relate fatigue 

crack growth to the characteristic microstructure of the damaged steel for decades 
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following the early work of Laird (Laird and Smith 1963). Lankford and Davidson 

(Lankford and Davidson 1983) studied striations and crack growth rates in relation to 

crack closure, and Davidson (Davidson 1984) studied slip localizations at the crack tip. 

Certain aspects of crack propagation can be viewed as a result of localized plastic 

deformation near the crack tip in ductile materials.  

Figure 5.1. Envelope of plastic zones in ductile material during fatigue crack growth 
(after Carroll 2011). 

The size of the plastic zone ahead of the crack tip increases with increasing load 

cycles under constant loading conditions. The strain field ahead of the crack tip suddenly 

redistributes and the released stress is partially manifested as transient elastic waves 

referred to as acoustic emission (ASNT 2005). Ductile fractures of steel are initiated by 

the nucleation and subsequent coalescence of micro-cracks (or voids) which form at 

second phase particles (see Table 5.1) (ASNT 2005, Hossain et al. 2013). In fatigue 

testing of a specimen with pre-cracking, voids may form at a preferred distance ahead of 

the crack tip due to the tri-axial stress field. For typical structural steels the site of micro-

cracking is primarily around the inclusions (ASNT 2005, Hossain et al. 2013). Further 
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increasing the strain in the plastic zone leads to ligament shearing which finally leads to 

macro-scopic crack extension. 

The energy release during the formation of the plastic zone and the associated 

crack extension is a ductile mechanism which takes place over a comparatively longer 

period of time. This type of mechanism produces relatively low amplitude AE that is 

difficult to detect with conventional AE sensors (ASNT 2005). AE counts, N, have been 

reported to be proportional to the m-th power of the stress intensity factor (N α Km) 

(ASNT 2005, Davidson 1984). A typical value of m is 4 and the AE source is distributed 

not only on the main fracture plane but also within a small volume ahead of the crack tip 

referred to as the plastic zone (ASNT 2005). In contrast, cleavage fracture entails release 

of energy over a relatively short period of time.  This type of mechanism produces higher 

amplitude AE signals that are readily detectable with conventional AE sensors (ASNT 

2005, Hossain et al. 2013). 

The relationship between the strain fields near the crack tip has been recognized 

as an important one (Carroll 2011, Chauvot and Sester 2000, Davidson 1984, El Bartali et 

al. 2008, Elbert 1971, Jonnalagadda et al. 2010, Laird and Smith 1963, Lambros and 

Patel 2011, Lankford and Davidson 1983, Peralta et al. 2007) to understand micro-level 

fatigue crack extension. While extensive research has been conducted in relation to 

fatigue crack growth (Carroll 2011, Davidson 1984, El Bartali et al. 2008, Elbert 1971, 

Ewing and Humfrey 1903, Hoshide and Socie 1988, Laird and Smith 1963, Lankford and 

Davidson 1983, Magnin et al. 1985, Ochi et al. 1985, Peralta et al. 2007), at present no 

consensus exists regarding the mechanisms that cause the associated AE in steel bridge 

materials.  
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In this paper, time synchronization of AE data with Digital Image Correlation 

(DIC) measurements is carried out to examine the source mechanisms associated with AE 

activity. 

5.2 FATIGUE CRACK GROWTH 

Fatigue crack behavior can be divided into five stages (Carroll 2011): (1) 

microstructural changes due to plastic deformation leading to permanent damage 

accumulation, (2) microcrack nucleation, (3) microcrack growth and coalescence into a 

dominant crack, (4) growth of the dominant fatigue crack, and (5) final fracture. 

Structural components subjected to high cycle fatigue (i.e., low stress and lifetimes more 

than 10,000 cycles) are dominated by microcrack nucleation in stage I with relatively 

little time spent in the other two stages (II and III). In low cycle fatigue (i.e., high stress 

and lifetimes of 10,000 cycles or less), many microcracks nucleate in the early cycles, but 

most of the fatigue life is spent linking microcracks to form a dominant crack. Fatigue 

crack growth analysis is used when a significant portion of the lifetime is spent growing a 

single crack to failure. Because the focus of this work is fatigue crack growth, notched 

specimens with pre-cracking in compression were used so that a dominant fatigue crack 

initiated early with minimum residual stress. 

Fatigue crack growth is divided into three stages. Stage I refers to low speed 

cracking near the threshold. In this stage, fatigue crack growth typically occurs when 

cracks are microstructurally short and is characterized by a crack tip plastic zone size that 

is smaller than the grain size. In stage I, fatigue cracks follow slip systems within grains 

changing direction at grain boundaries. Stage II refers to stable crack growth, and is 
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sometimes referred to as the Paris regime. Once the crack has grown through several 

grains, its associated plastic zone covers multiple grains, and it is said to be in stage II 

crack growth. The fatigue crack path in stage II is dominated by global loading 

conditions that cause the crack to generally grow perpendicular to the direction of 

maximum principal stress. Although stage II fatigue crack growth is often thought of as 

independent of microstructure, the crack path still changes direction according to 

microstructural parameters. The interplay between global crack driving forces and 

microstructural effects on the crack path in stage II and the resulting acoustic emission 

are the focus of this study. Stage III is associated with unstable fatigue crack growth. 

Fatigue crack growth in metals occurs by the repeated blunting and shear 

deformation process shown schematically in Figure 5.2 (Laird and Smith 1963). 

According to Laird and Smith (1963), as a cracked specimen is loaded the material at the 

crack tip yields in shear deformation at the crack tip resulting in crack tip blunting. 

Unloading subsequently results in a sharpening of the crack as the elastic material 

surrounding the crack tip region forces the crack closed once again. Although this basic 

fatigue crack growth mechanism does not explicitly consider the effects of 

microstructure, the concept can be used to qualitatively explain many of the features seen 

in experimental observations of fatigue crack growth. At the first instance, this can be 

thought of as the collective response of two or more grains in the vicinity of the crack tip. 

Interaction at this scale would include the effects of grain boundaries in the evolution of 

plastic deformation in fatigue. The grain boundaries may act either as deformation 

initiators, or as deformation inhibitors depending upon the type of boundary and/or the 

local loading conditions. 
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Figure 5.2. Mechanism of fatigue crack propagation proposed by Laird in 1963 (after 
Laird and Smith 1963) (a) unloading, (b) increasing tension, (c) peak load, (d) unloading, 

(e) unloaded, (f) increasing load on the subsequent cycle (after Carroll 2011). 
 

5.3 STRAIN MEASUREMENTS IN FATIGUE CRACK GROWTH 

Despite extensive study of fatigue cracking, published measurements of full-field 

strains associated with fatigue crack growth are relatively limited. One of the earliest 

measurements of the strain field near a fatigue crack was made by Morris et al. (1985). 

The authors computed strains by manually comparing optical micrographs in a 

rudimentary form of digital image correlation. These low-resolution strain fields were 

used to examine the shape of the plastically deformed material on the surface containing 

the crack tip. 

Recently Carroll (2011) studied crack nucleation and fatigue growth rates in 

relation to microstructure at the crack tip with measurements of strain fields. Previously 

Peralta et al. (2007) studied full-field measurements of strain fields in fatigue crack 

growth. However, in their work, there was little consideration of microstructure and no 
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consideration of acoustic emission monitoring. These researchers measured the strain 

field around crack tips for several specimens and found strain localizations in lobes along 

slip bands ahead of the crack tip. 

5.4 DIGITAL IMAGE CORRELATION (DIC) 

DIC is a technique for measuring full-field displacements by comparing an image 

of a deformed specimen surface with a speckle pattern () to a reference image at an 

earlier state (Figure 5.3). More information can be found in Sutton et al. (1983, 1999, 

2009). At the micro-scale, sub-grain level deformation can be captured (Sutton et al. 

2009) and eventually strain fields near the crack tip can be obtained. DIC can also be 

effective for nanoscale measurements (Carroll 2011, Sutton et al. 1999). DIC is typically 

implemented by matching image subsets having sizes that range from 21×21 px to 

101×101 px depending on the quality of the speckle pattern (Carroll 2011, Sutton et al. 

2009, Sutton et al. 1983, Sutton et al. 1999).  

In addition to plastic deformation and crack extension, AE sensors are also 

sensitive to other noise, which is primarily generated from grating between the fracture 

surfaces and abrasion within the load train. Grating emission occurs mainly during 

reverse cycling. To minimize grating emission, AE collected below 80% of the maximum 

load was eliminated from the dataset (Hossain et al. 2013, Yu et al. 2011). Based on the 

characteristics of the waveforms, duration-amplitude filters similar to the Swansong II 

(Fowler et al. 1989) for a threshold equal to 45 dB were employed to minimize 

mechanical noise in the AE dataset. 
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Figure 5.3. Subsets are mapped to their deformed locations to determine the displacement 
at each correlation point (after Carroll 2011). 

 

For this study, a compact tension specimen was polished and a speckle pattern 

was created by spraying black and white paint. High-resolution images were acquired 

with a five Mega-pixel Point-Gray camera and a macro lens (NIKKOR-50 mm F/1.4G 

AF-S) (Figure 5.4). The camera was triggered to acquire images at a rate of 5 frames per 

second using the software Vic-Snap 2010 (Correlated Solutions). The distance of the 

camera from the measurement area was approximately 760 mm (30 in). The area of the 

speckle pattern was 146 mm × 120 mm (5.7 inch × 4.73 inch). The size of the 

measurement area was 73 mm × 65 mm (2.9 inch × 4.73 inch) along the x-axis and y-

axis, respectively. The average highest-level value of noise at zero displacement was 

approximately ± 0.023 percent (an average noise level was calculated based on 10 data 

sets collected at zero displacement). The selection of subset size and step for a better 

correlation is important for DIC and the default subset of 21 and step of 5 were used for 
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this study. The distance between the boundaries of the measurement area and the 

boundaries of the speckle pattern, which are well known to be the areas more prone to 

noise in DIC measurements, was in the range of 10 mm (0.4 inch) to 30 mm (1.2 inch) 

along the y-axis and 8 mm (0.3 inch) to 50.8 mm (2 inch) along the x-axis. The average 

strain field along the y-axis was extracted using inspector tools (a circular strain 

monitoring area was used) and plotted over time. The strain monitoring inspection circle 

was placed at the crack tip in different locations and the whole process was repeated 

several times. In most cases no significant relative strain variations were observed. 

Further information is discussed in the following sections. 

5.5 CT SPECIMEN TESTING AND AE MONITORING 

A compact tension (CT2) specimen of ASTM A572 Grade 50 structural steel was 

utilized for AE monitoring during constant amplitude cyclic loading. The chemical 

composition of the steel is shown in Table 5.1. The effective width of the CT specimen 

was 241 mm (9.5 inch), and the thickness was 12.7 mm (0.5 inch), with an initial crack 

(notch) length of 82.6 mm (3.25 inch) (Figure 5.4). A clip gage and a microscopic video 

camera were used to monitor crack propagation.  The maximum applied load was 65 kN 

(14.6 kips) with a load ratio (R) of 0.1 at a frequency of 2 Hz. Two R15I-AST AE 

sensors and six wideband (WDI) sensors were used as shown in Figure 5.4 (a). Epoxy 

and tape were used to secure the sensors on the steel surface. All AE sensors had internal 

pre-amplification of 40 dB. The test amplitude threshold was set to 45 dB and signals 

were stored and displayed with a DiSP unit (Mistras Group, Inc.). 
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(a) schematic 

 

(b) photograph during testing with DIC setup 

Figure 5.4. Compact tension (CT) specimen. 
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Table 5.1. Chemical Properties of Steel. 
 

Element Weight % 
Iron (Fe) Base metal 

Manganese (Mn) 1.35 (max) 
Silicon (Si) 0.30 (max) 
Carbon (C) 0.23 (max) 
Copper (Cu) 0.20 (min) 
Sulfur (S) 0.05 

Phosphorus (P) 0.04 

5.6 RESULTS AND DISCUSSION 

Strain Fields: 

Specimens were cycled by sine-wave loading at 2-Hz in an MTS machine. 

Periodically, at maximum load as shown in Figure 5.5, a picture was captured with a 

NIKKOR-50mm F/1.4G AF-S lens triggered by computer using Vic-snap 2009 software 

(Correlated Solutions). For this study, changing of the strain field near the crack was 

examined to monitor the cracking phenomena. The DIC technique presented here is far 

more powerful than simple imaging of the raw pictures.  

 
Figure 5.5. Schematic of DIC image acquisition steps between fatigue cycles. 



www.manaraa.com

 

81 
 

Post-processing was performed using Vic-2D 2009 software (Correlated 

Solutions). Figure 5.5 shows the schematic of DIC image acquisition steps between 

fatigue cycles. The process for analyzing the strain field near the crack tip relies on a 

series of images of the deformed specimen during cyclic loading as summarized in 

Figures 5.6 through 5.9. These figures are presented with stress intensity range on the 

horizontal axis, where the stress intensity range is related to crack growth behavior as 

follows: 

• Early stage II: Stress intensity range (∆K) between 57 MPa√m (51.9 ksi√in) 

(corresponding to the initial crack length) to 60 MPa√m (54.6 ksi√in). 

• Mid stage II: Stress intensity range (∆K) between 60 (54.6 ksi√in) to 95 

MPa√m (81.9 ksi√in). 

• Late stage II: ∆K is in the range of 95 (81.9 ksi√in) to 128 MPa√m (116.5 

ksi√in) near the critical level fatigue crack where the fatigue crack is much 

faster than calculated using the Paris equation. 

• Stage III: Stress intensity range (∆K) is greater 128 MPa√m (116.5 ksi√in) 

to the end of the test, critical level fatigue cracking where crack grows much 

faster than the Paris regime.  

DIC is performed between load cycles to describe the accumulation of plastic 

strain that was used to investigate the accumulation of fatigue damage and microlevel 

crack extension. The black region on the left side of the representative DIC strain 

contours in Figures 5.6 through 5.9 show the initial V-notch from which the fatigue crack 

originates. The contours shown in Figures 5.6 through 5.9 are DIC measurements of the 
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εyy strain field (i.e., perpendicular to the x direction) that describes a formed plastic zone 

[red area in Figure 5.6(a)] and a rapid decrease in local strain during cyclic loading. The 

crack tip is indicated by the blank mark.  

Figure 5.6(a) shows the average strain during the fourth cycle at the peak load. 

The maximum strain recorded was 0.89 ± 0.023 %. The deformed images within the 

shaded area are captured at the same level of cyclic load, so it is reasonable to compare 

the average measured strain within the same circular area, which can provide insight into 

the cracking phenomena at the microlevel.  

Fatigue strain accumulated in each cycle during the formation of the plastic zone 

and the measured maximum strain was 1.13 ± 0.023 % at stress intensity range of 59.21 

MPa√m (53.88 ksi√in) [Figure 5.6(b)]. Accumulated strain at the crack tip causes a 

sudden crack extension that is accompanied by a redistribution of stress near the crack tip 

and peak strain as shown in Figures 5.6(c) and (d). Figure 5.6(d) shows the change of 

maximum strain around -0.16% between 59.21 MPa√m (53.88 ksi√in) and 59.22 MPa√m 

(53.89 ksi√in), which clearly indicates the microlevel crack extension and hence a sudden 

drop in strain.  

In Figures 5.6, the strain field indicates that several strain localizations occured in 

early stage II– primarily starting at grain boundaries but also appearing as strain 

accumulation along specific slip systems – before the crack even enters the region. Even 

more interesting is that in Late Stage II,  measurable strain redistribution are visible  as 

shown in Figure5.7 primarily in the form of strain field dropping. The evolution of strain 

fields in Figure 5.8 and 5.9 show that many areas start accumulating strain long before 
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the crack reaches the region of interest (i.e., ahead of the high strain lobes at the crack 

tip). As the crack tip approaches each region, other strain localizations form, but the 

earliest slip band localizations intensify and most become the sites where some of the 

highest strains in the region are observed.  

 This sequence of events is apparent in Figures 5.6 through 5.9. The phenomenon 

is repeatedly observed throughout the crack propagation.The strain fields also show that 

plastic strain accumulation occurs when the two lobes emanating from the crack tip reach 

the point of interest. The material directly ahead of the crack tip is relatively unstrained 

until the crack tip passes through it. A good examples of this is in Figures 5.6 through 

5.8. Crack tip locations (the same ones displayed in Figures 5.7, 5.8 and 5.9) were 

identified in the deformed images as demonstrated in Figure5.6 on DIC images within 

inspection region. These inspection locations were then transformed to the desired 

locations and the average strain field at each image was calculated. 

In Figures 5.7 through 5.9, εyy strain fields at different stress intensity range are 

shown for mid stage II, late stage II to stage III, and late Stage III, respectively. These six 

strain fileds in each figure, at the stress intensity range (∆K) indicated; provide an 

accurate indication of strain evolution with crack location. When the crack crosses the 

region of observation, the crack line (black line) with a white circle indicating the crack 

tip (Figures 5.7 and 5.8), the inspection circle is replaced to the new observation point at 

the crack tip to monitor the local strain field and thereby monitor the microlevel fatigue 

crack extension. 
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Figure 5.6. Strain fields, εyy – (Early to Mid Stage II): (a) DIC performed at 56.94 
MPa√m (51.82 ksi√in); (b) DIC performed at 59.21 MPa√m (53.88 ksi√in); (c) DIC 

performed at 59.22 MPa√m (53.89 ksi√in); (d) Strain drop between 59.21 MPa√m (53.88 
ksi√in) and 59.22 MPa√m (53.89 ksi√in); (e) DIC performed at 61.54 MPa√m (56.00 

ksi√in); (f) DIC performed at 61.55 MPa√m (56.01 ksi√in). 
 
 

 
(a)                                                       (b) 

 
(c)                                                       (d) 

  
(e)                                                       (f) 
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(a)                                                                (b) 

 
(c)                                                                (d) 

  
(e)                                                                (f) 

Figure 5.7. Strain fields, εyy – (Mid Stage II): (a) DIC performed at 66.25 MPa√m (60.29 
ksi√in); (b) DIC performed at 66.62 MPa√m (60.63 ksi√in); (c) DIC performed at 76.06 

MPa√m (69.22 ksi√in); (d) DIC performed at 76.61 MPa√m (69.72 ksi√in); (e) DIC 
performed at 77.17 MPa√m (70.23 ksi√in); (f) DIC performed at 88.26 MPa√m (80.32 

ksi√in) 
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Figure 5.7 provides the average strain fileds at Mid Stage II [60 (54.6 ksi√in) to 95 

MPa√m (81.9 ksi√in)]. The maximum accumulated strain field recorded was 1.85 ± 

0.023 % as shown in Figure 5.7(a) at stress instensity range 66.25 MPa√m (60.29 ksi√in) 

to 2.96 ± 0.023 % as shown in Figure 5.7(f) at the end of mid stage II [88.26 MPa√m 

(80.32 ksi√in)]. Therefore, DIC provides grain level measurements of the strain fields 

and how they developes as the crack grow through the CT specimen in addition to crack 

tip location. These strain field measurements linked to the microstructure with scanning 

electron microscope (SEM), eventually provides insight of the fatigue crack growth 

mechanisms at microlevel. After ending the fatigue test, SEM analysis was perfprmed 

and that gives visual confirmation of the slip bands seen in the DIC measurements and a 

clearer picture of the crack path in relation to the microstructure, finally, images of the 

fracture surface give limited but useful glimpse of fracture mechanisms within the 

interior of the specimen and will be discussed in the following section. 

Figure 5.8 shows the average strain fileds at Late Stage II to Stage III [95.77 

MPa√m (87.16 ksi√in) to 147.58 MPa√m (134.30 ksi√in)]. The maximum accumulated 

strain field recorded was 5.4 ± 0.023 % as shown in Figure 5.8 (a) at stress instensity 

range 95.77 MPa√m (87.16 ksi√in) and 2.98 ± 0.023 % as shown in Figure 5.8 (b) at 

105.53 MPa√m (96.04 ksi√in), therefore strain redistribution occured at the crack tip [ 

Figure 5.8 (a) and (b)]. Strain accumulation that indicate the microcrack extension. 

Results show that some plastic strains accumulate ahead of the crack tip, but most strain 

localization occurs when the crack tip pass through the material. In the area directly 

ahead of the crack tip, between the crack tips, there is relatively little strain as shown in 

Figures 5.6-5.9 until the crack tip passes.  
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(a)                                                                (b) 

 
(c)                                                                (d) 

 
(e)                                                                (f) 

Figure 5.8. Strain fields, εyy – (Late Stage II to Stage III): (a) DIC performed at 95.77 
MPa√m (87.16 ksi√in); (b) DIC performed at 105.53 MPa√m (96.04 ksi√in); (c) DIC 

performed at 105.58 MPa√m (96.08 ksi√in); (d) DIC performed at 133.37 MPa√m 
(121.37 ksi√in); (e) DIC performed at 147.56 MPa√m (134.29 ksi√in); (f) DIC performed 

at 147.58 MPa√m (134.30 ksi√in).  
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The strain value 2.34 ± 0.023 % as shown in Figure 5.8 (c) at 105.58 MPa√m (96.08 

ksi√in) is increased to 5.30 ± 0.023 % as shown in Figure 5.8 (d) at 133.37 MPa√m 

(121.37 ksi√in). Strain accumulation, localization and redistribution within the plastic 

zone of the fatigue crack has a complex dependency on several factors including stress 

intensity range (driving force for the fatigue crack growth), position with relation to the 

crack line, crack direction, grain geometry and orientation, and sub-surface grains. 

Further strain accumulation is observed and the maximum strain field increased to 9.0 ± 

0.023 % as shown in Figure 5.8 (e) at 147.56 MPa√m (134.29 ksi√in); and finally strain 

field is droppedto 8.0 ± 0.023 % as shown in Figure 5.8 (d) at 147.58 MPa√m (134.30 

ksi√in). At higher stress intensity range, crack growth is in a transgranular fashion, most 

frequently following slip bands. These phenomena can be found in Figures 5.6 though 

5.9. DIC images as shown in Figures 5.9 (a) through (f) provide the average strain fileds 

at the crack at late Stage III [164.79 MPa√m (149.97 ksi√in) to 203.63 MPa√m (185.31 

ksi√in) The average strain field recored at 178.33 MPa√m (162.29 ksi√in) was 17.50± 

0.023 % and then strain field result as shown in Figure 5.9 (b) that was obtained at 192.66 

MPa√m (175.33 ksi√in); which shows the average strain value was 49.50 ± 0.023 % at 

crack tip Therefore microstructure of the grain and stress intensity range are the complex 

dependency factor on crack growth. The microstructural effects are evident in the form of 

generating microcracks and frequent changes the main crack direction. Ultimately, the 

crack path depends on a number of factors including the local stress field, the global 

crack driving force, and local microstructural inhomogeneities. The strain field gradually 

increased at Late Stage III as shown in Figures 5.9.  
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Figure 5.9. Strain fields, εyy – (Late Stage III): (a) DIC performed at 164.79 MPa√m 
(149.97 ksi√in); (b) DIC performed at 178.33 MPa√m (162.29 ksi√in); (c) DIC 

performed at 192.66 MPa√m (175.33 ksi√in); (d) DIC performed at 199.14 MPa√m 
(178.11 ksi√in); (e) DIC performed at 202.08 MPa√m (183.91 ksi√in); (f) DIC performed 

at 203.63 MPa√m (185.31 ksi√in). 
 

 

 
(a)                                           (b) 

 
(c)                                                  (d) 

 
(e)                                                  (f) 
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The average strain field at stress intensity range of 199.14 MPa√m (178.11 

ksi√in) was 233 ± 0.023 % (Figure 5.9(d); at 202.08 MPa√m (183.91 ksi√in) and 203.63 

MPa√m (185.31 ksi√in), it was 362 ± 0.023 % and 478 ± 0.023 %, respectively. No strain 

redistribution is observed in Stage III. Crack extention is namely transgranular or 

intergranular. 

The above discussion, it can be summarized that in early stage II the εyy strain 

fields is nearly linear with a relatively static crack and the stress intensity range is almost 

constant. The deviations from linearity in εyy strain field are primarily due to 

microstructural effects, but there may be some amount of crack tip identification error 

present as well to calculate the average strain (εyy strain field) at the crack tip. As the 

crack grows through the microstructure, the crack growth rate varied due to changes in 

crack direction and varying resistance of the microstructure to crack growth with location 

and stress level. Therefore, subsequent DIC images are capable of inspecting grain level 

crack extension and the movement of the crack tip can be identified with high accuracy to 

make conclusions about crack growth extensions at the grain level. 

Synchronization of AE and DIC Data:  

AE above 45 dB was continuously recorded and the cracking phenomenon was 

monitored using a clip gage and DIC to correlate AE hits and events associated with 

fatigue crack growth. The total number of AE events and hits recorded throughout the 

test was 33,777 and 150,615 respectively as shown in Figure 5.10(a). The term ’hit’ 

refers to the detection and measurement of an AE signal on any individual channel and 

the term  ‘event’ refers hits of 3 or more sensors within a particular period of time. Based 
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on the characteristics of the waveform of AE hits, Swansong II filter and 80 % of the 

peak load filters are applied. Swansong filter is based on the amplitude and durations of 

the AE hits. Mechanical noises have higher duration and relatively low amplitude. AE 

hits. Details of the Swangsong II filter and load filter may be found in article of Yu et at. 

(2011). the idea for load filter is fatigue crack extents during cycling loading only during 

opening of the crack. Previous study showed the crack extends above the 80 % (52 kN) 

of the peak load (65 kN). After filtering, the number of hits was reduced to 107,642 

[Figure 5.10(b)], which is approximately 70% of the total hits. A previous study has 

shown that less than 1% of the total hits during fatigue testing may be potentially 

associated with fatigue crack extension (Hossain et al. 2012), where as the remaining 

singals may be associated with mechanical noise in the loading train, reflections, and 

grating emissions.  

To minimize acoustic emission associated with reflections the hit lockout feature 

was used. The hit lockout value is a length of time or distance, which controls the interval 

between consecutive hits. The hit lockout value used in this test was 40 micro-seconds. 

This hit lockout time was calculated based on the specimen dimension and wave speed. 

Calculated average wave speed was 5,770,000 mm (227,000 inch) per second and the 

wave travels a distance of 231 mm (9.10 inch) during a 40 micro-second period. The 

distance between the crack tip and the edge of the specimen is in the range of 114 mm 

(4.49 inch) to 146 mm (5.75 inch). Any energy release at the crack tip will travel as 

elastic waves and hits the sensors directly and part of the wave reflected at the edge of the 

specimen, and come back toward the sensors. For example, any crack extension may 

produce an elastic wave, travel through the medium, hits sensor 3 directly (shortest 



www.manaraa.com

 

92 
 

distance from crack tip) and top (face where sensor 5 is attached) or bottom edge (face 

where sensor 1 is attached), as shown in Figure 5.4, simultaneously. Depending on the 

energy of the incident wave, part of the incident energy may reflect from the edge, travel 

toward and hit sensor 3. Therefore the time difference between these two successive hits 

is in the range of 13 (3 inch/227,000 inch/sec) to 33 (7.5/227,000 inch/sec) micro-

seconds. Hence after receiving the direct hit, the sensor will lock out and will not receive 

any hit when the time difference between two successive hits is less than 40 micro-

seconds. 

AE data was plotted against the stress intensity range [Figures 5.10(c), (d), (e)]. 

The stress intensity was calculated based on the ASTM 2006 emperical expression 

(ASTM, 2006). A clip gage was used to record the Crack Mouth Opening Displacement 

(CMOD), ‘d’ and then the ASTM (2006) empirical expression was used to calculate the 

crack length, ‘a’ (from the center of the loading line) which in turn is used to calculate the 

stress intensity range.  

AE data was plotted against the load data. In most cases AE events were recorded 

during crack closure and high amplitude AE events which may generate reflections were 

not present immediately before these events. Though the dataset has been filtered to 

exclude hits below 80 % of peak load, these AE events may still be due to friction 

between the fracture surfaces as shown in Figures 5.6 through 5.9. The other potential 

source can be mechanical noise from the loading pins.  
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(a)                                                                (b) 

 

(c)                                                                (d) 

 
(e)                                                                (f) 

Figure 5.10. Amplitude distribution: (a) hit amplitude vs time without filter (full-data); 
(b) hit amplitude vs time after eliminating below 80% of the peak load and applying 

Swansong II filter; (c) hit amplitude vs stress intensity range without filter (full-data); (d) 
hit amplitude vs stress intensity range after eliminating below 80% load of the peak load 
and applying Swansong II filter; (e) hit amplitude vs time after eliminating below 80% of 
the peak load and applying Swansong II filter along with  a source location based filter    
(f) hit amplitude vs stress intensity range after eliminating below 80% load of the peak 

load and applying Swansong II filter along with a source location based filter. 
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To minimize this noise, source location filtering (SLF) was employed. Only the 

events near the crack tip were extracted by using MATLAB code based on the source 

sensor distance and the sequence of the arrival time of the waveforms. The basic idea is 

that the closest sensors are triggered by the waveform first and vice-versa. After 

employing the SLF technique, the remaining hits and AE events are 2,241 and 334, 

respectively [Figure 5.10(e)].  

The source location based filtering technique possesses several advantages over 

other filtering methods, such as high sensitivity and ability to filter the crack related AE 

data located along the source of damage. Source localization is an important part of any 

monitoring process and can also be utilized as a filtering method. The other advantage of 

SLF method lies in the fact that the proper filtering algorithm can detect the real hits as 

they occur, that is, in real time for reduction of the unrelated AE data; whereas other 

filtering methods such as Swansong II filter are often customized to the dataset and are 

therefore employed after the data has been acquired. The sequence of arrival time (TOA) 

of AE waves is utilized based on the sensor location on the CT specimen and the location 

of the defect source is determined by minimizing the Chi Squared error function. More 

details of Chi Squared Error function can be found in literature (PAC 2004, ASNT 2005). 

Figures 5.11 to 5.14 show synchronization between the AE data and the strain 

field near the crack tip during cyclic loading which was monitored through DIC. The 

strain value perpendicular to the crack line as shown in Figure 5.11 through 5.14 was 

calculated based on the average strain in the area marked with a white circle at the crack 

tip as shown in the Figures 5.6 through 5.9. As the crack tip throughout the test is 

changing with time, this white circle was always placed in such a way so that the strain 
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field near the crack tip was effectively monitored. The wave forms of the AE events at 

335.65 seconds [61.1 MPa√m (55.6 ksi√in), early stage II] for different channels are 

shown in Figure 5.15, and these waveforms are indicative of events generated from 

friction. The micro-level fatigue crack extension (indicated by strain drop) did not 

produce detectable AE events at 335.65 seconds [61.1 MPa√m (55.6 ksi√in), early stage 

II], 825 seconds [63.5 MPa√m (57.8 ksi√in), middle stage II], or 1,296 seconds [65.5 

MPa√m (59.6 ksi√in), middle stage II] (see Figure 5.11). Figure 5.11(a) shows 

accumulation of the strain field which indicates gradual formation of the plastic zone at 

the crack tip during cyclic loading and then extensive plastic deformation causing sudden 

micro-crack extension. Due to this tiny crack extension the strain field near the crack tip 

rapidly redistributes and the average strain measured within the white circular area drops 

as shown in Figure 5.11, where three micro-crack extensions are marked. It can be seen 

that several hundred load cycles are required to generate the plastic zone and 

subsequently the final fracture, where the process is considered to be dominated by 

ductile mechanisms such as plastic deformation, disbonding of inclusions, and generation 

and coalescence of microvoids.  

In early stage II, stress intensity range ∆K less than 60 MPa√m (54.6 ksi√in) (see 

Figure 5.10), ductile mechanisms are dominant. For these mechanisms, it is speculated 

that waveforms are mainly associated with plastic deformation, disbonding of inclusions, 

and generation/coalescence of microvoids. The individual processes can produce AE 

events which are less energetic than brittle cleavage fracture, and the energy releases over 

a relatively longer period of time (ASNT, 2005). AE hits with relatively small amplitude 

were recorded at 1025.57 [64.4 MPa√m (58.6 ksi√in) middle stage II] and 2025.57 
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seconds [69.0 MPa√m (62.8 ksi√in), middle stage II]. However, it is difficult to conclude 

which mechanisms produce the events. Plastic deformation, inclusion disbanding, and 

cleavage fracture are potential sources. For inclusion disbonding and cleavage fractures 

small plastic deformation is required. In each load cycle, small plastic deformations occur 

at the crack tip. Throughout the test, fatigue crack extension predominantly occurs by 

plastic deformations which were observed in the strain field data as well as the stress 

intensity range values. Plastic deformations generally do not produce detectable AE 

events when the instrument threshold is set to 45 dB. No irregularities were observed in 

the strain field at 1025.57 seconds [64.4 MPa√m (58.6 ksi√in), middle stage II] and 

2025.57 seconds [69.0 MPa√m (62.8 ksi√in), middle stage II], as shown in Figures 

5.12(a) and (b).  This indicates that either disbonding or cleavage fracture may produce 

these AE events.  In early stage II, inclusion disbonding governs which may contribute to 

these events.  

During the later stages [∆K greater than 95 MPa√m (86.5 ksi√in), late stage II, 

see Figure 5.10], high amplitude AE data is dominant which may be produced by brittle 

fracture mechanisms such as cleavage fracture. From Figure 5.11 (a) it can be seen that 

the strain field drops due the the small crack extensions are slightly decreasing. This may 

be due to accumulation of strain near the crack tip decreasing before crack extensions. At 

higher stress intensity [greater than 95 MPa√m (86.5 ksi√in), late stage II] (higher strain), 

the crack grows in each fatigue cycle via plastic deformation. For cleavage fracture 

during fatigue crack extensions, small plastic deformation is required. When a crack tip is 

located at a ferrite grain, the strain rate is high enough to split the grain and pass through 

it which may then produce high amplitude AE events.  
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Figures 5.12 (b) and (c), 5.13 (a) and (c), and 5.14 (d) and (e) show strain drops 

which produce AE events. These drops may be considered to be due to fatigue crack 

extension via ductile mechanisms. Hence crack extension via ductile mechanisms in the 

later stage II [∆K greater than 95 MPa√m (86.5 ksi√in)] can produce detectable AE 

events. When high amplitude AE hits are found in AE data [Figure 5.14 (b) and (f)], 

relatively small amplitude AE events are also found just surrounding those events. This 

observation can be explained using the theoretical background for dislocation crack tip 

shielding (Weertman 2007). According to this theory, a dislocation leaves the crack tip 

(into previously plastically deformed material) when the applied stress intensity factor K 

reaches the level: 

 K=gKgc=Kgb (5.1) 

Here Kgc is the critical K value for cleavage fracture for a Griffith–Inglis crack in an 

elastic solid, Kgb is the critical K value for dislocation emission, and g is a constant of 

order of magnitude 1.0. Dislocation emission occurs before cleavage failure when g is 

smaller than 1.0. It is argued that if the applied K is much greater than Kgb many 

dislocations will leave the crack tip but no further dislocation emission occurs once the 

radius ρ of the blunted crack tip reaches the value:  

 
2

2

22

2

2

2

G

K

Kg

bK

K

bK

gbgb

ηρ ==≈  (5.2) 

Here b is the Burgers vector length of a dislocation. Hence, dislocations can be expected 

to be emitted from a blunted crack tip until ρ attains the value given by equation (5.2). In 

equation (5.1) and equation (5.2) Kgc is equal to:  
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energy γ ≈ (1/2) σt dt where σ

(a)                                                         

(c)                                                         (d)
Figure 5.11. Strain fields, εyy

load and applying Swansong II filter along with a source location based filter: (a) 
between 0 to 1,800 seconds; 
to 350 seconds [61.0 to 61.2 MPa
extension); (c) between 810 to 840 seconds

and (d) between 1,000 to 1,800 seconds

98 

υ
G

 

is the surface energy of the solid and ν is Poisson’s ratio. (Note that the surface 

σt ≈ (1/5) G is the theoretical strength of the solid and 

(a)                                                                (b) 

(c)                                                         (d) 
yy and AE hits after eliminating below 80% load of the peak 

load and applying Swansong II filter along with a source location based filter: (a) 
between 0 to 1,800 seconds; [58.7 to 67.8 MPa√m (53.5 to 61.7 ksi√in)] (b) between 320 

[61.0 to 61.2 MPa√m (55.5 to 55.7 ksi√in)] (zoomed to assess first crack 
extension); (c) between 810 to 840 seconds [63.4 to 63.6 MPa√m (57.7 to 57.9 ksi

and (d) between 1,000 to 1,800 seconds [64.2 to 67.8 MPa√m (58.5 to 61.7 ksi

(5.3) 

is Poisson’s ratio. (Note that the surface 

is the theoretical strength of the solid and dt ≈ 2b.  

 

 

after eliminating below 80% load of the peak 
load and applying Swansong II filter along with a source location based filter: (a) 

(b) between 320 
(zoomed to assess first crack 

m (57.7 to 57.9 ksi√in)]; 
m (58.5 to 61.7 ksi√in)]. 
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(a)                            

(c)                                                         (d)

(e)                                                         (f)
Figure 5.12. Strain fields, εyy

load and applying Swansong II filter along with a source location based filter: (a) 
between 0 to 1,800 seconds

1,800 to 2,200 seconds [ 69.9 MPa
[78.7 MPa√m (71.6 ksi√in)]
83.4 ksi√in)]; (e) between 5,570 to 5,970 seconds

between 5,970 to 6,370 seconds
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(a)                                                                (b) 

(c)                                                         (d) 

(e)                                                         (f) 
yy and AE hits after eliminating below 80% load of 

load and applying Swansong II filter along with a source location based filter: (a) 
between 0 to 1,800 seconds [58.7 to 67.8 MPa√m (53.5 to 61.7 ksi√in)]; (b) between 

69.9 MPa√m ( 63.6 ksi√in)]; (c) between 2,200 to 3,769 
√in)]; and (d) between 3,770 to 5,569 seconds [91.6 MPa

; (e) between 5,570 to 5,970 seconds [95.4 MPa√m (86.8 ksi√in)]
between 5,970 to 6,370 seconds [99.7 MPa√m (90.7 ksi√in)]. 

 

 

 

after eliminating below 80% load of the peak 
load and applying Swansong II filter along with a source location based filter: (a) 

; (b) between 
to 3,769 seconds 

[91.6 MPa√m ( 
m (86.8 ksi√in)]; and (f) 
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(a)         

(c)                                                         (d)

(e)                                                         (f)
Figure 5.13. Strain fields, ε

seconds [99.6 to 104.4 MPa√
[104.4 to 110.1 MPa√m (95.0 to 100.2 ksi

[110.1 to 117.0 MPa√m (100.2 to 106.5 ksi
[116.9 to 125.4 MPa√m (106.4 to 141.1 ksi

[126.4 to 134.2 MPa√m (115.0 to 122.1 ksi
[134.2 to 140.0 MPa
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(a)                                                                (b) 

(c)                                                         (d) 

(e)                                                         (f) 
Figure 5.13. Strain fields, εyy and AE hits (filtered data): (a) between 6,368 to 6,768 

√m (90.7 to 95.1 ksi√in)]; (b) between 6,767 to 7,167 seconds
m (95.0 to 100.2 ksi√in)]; (c) between 7,168 to 7,568 seconds

m (100.2 to 106.5 ksi√in)]; and (d) between 7,560 to 7,960 seconds
m (106.4 to 141.1 ksi√in)]; (e) between 8,000 to 8,300 seconds

m (115.0 to 122.1 ksi√in)]; and (f) between 8,300 to 8,500 seconds
[134.2 to 140.0 MPa√m (122.1 to 127.4 ksi√in)]. 

 

 

 

(a) between 6,368 to 6,768 
; (b) between 6,767 to 7,167 seconds 

; (c) between 7,168 to 7,568 seconds 
ween 7,560 to 7,960 seconds 

; (e) between 8,000 to 8,300 seconds 
; and (f) between 8,300 to 8,500 seconds 
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(a)                                                                (b) 

 
(c)                                                         (d) 

 
(e)                                                         (f) 

Figure 5.14. Strain fields, εyy and AE hits (filtered data): (a) between 8,500 to 8,650 
seconds [144.8 MPa√m (131.8 ksi√in)]; (b) between 8,650 to 8,950 seconds [155.7 
MPa√m (141.7 ksi√in)]; (c) between 8,960 to 9,150 seconds [163.6 MPa√m (148.9 

ksi√in)]; (d) between 9,150 to 9,400 seconds [177.2 MPa√m (161.3 ksi√in)]; (e) between 
9,400 to 9,700seconds [205.4 MPa√m (186.9 ksi√in)]; and (f) between 9,700 to 9800 

seconds [221.4 MPa√m (201.5 ksi√in)]. 
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Characteristics of Waveforms: 

During testing of the CT specimen, AE waveforms above 50 dB were recorded. 

Local crack extension was monitored through the strain field at the crack tip to assess the 

AE events associated with fatigue crack extension. Figures 5.15 and 5.16 show the 

typical waveforms of AE events in the time domain during the fatigue test. The 

waveforms of the AE signals considered to be associated with friction in the load trains 

are shown in Figure 5.15. From the overall scenario of the waveform analysis a 

completely different AE behavior was noticed where AE was first detected at the earlier 

stage of fatigue testing, where the wave forms may be mainly associated with ductile 

fracture mechanisms which produce less energetic AE and the energy release rate is 

relatively slow [Figure 5.16(a)], with alternating appearances during later stages where 

the brittle fracture mechanisms produce high amplitude acoustic emission and the energy 

is released within a very short period of time as shown in Figure 5.16(b). Therefore, these 

waveforms have important roles in AE source characterization and later may also be used 

as supportive for AE source characterization. Grating emission tests were performed to 

understand the characteristics of noise due to grating of the fractured surface [Figure 

5.16(c)]. During grating tests, the magnitude of the cyclic load was insufficient for crack 

extension. A typical waveform from grating emission is shown in Figure 5.16(c). Pencil 

lead break tests were also performed to understand the characteristics of genuine hits 

[Figure 5.16(d)]. In a burst-type waveform, typical parameters include amplitude, rise 

time, duration, and counts.  

The waveforms from grating emission have long rise time, long duration, and 

poorly defined peak amplitude. The waveforms from brittle crack related events are 
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characterized by a relatively clean front-end, short rise time, short duration, and high 

amplitude [Figure 5.16(b)]. From a previous study it is generally believed that false ‘hits’ 

typically have low amplitude and longer duration. These waveforms can play important 

roles in AE source characterization and may be utilized to extract AE events associated to 

fatigue crack growth for in-service steel bridge health monitoring. 

 
(a)                                                                (b) 

 
(c)                                                         (d) 

Figure 5.15. Friction waveforms at 335.65 seconds [61.1 MPa√m (55.6 ksi√in)]: (a) 
channel 1; (b) channel 2; (c) channel 3; and (d) channel 4. 
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(a)                                                                (b) 
 

 
 

(c)                                                                (d) 
 

Figure 5.16. Typical waveforms (x-axis in microseconds and y-axis in millivolts) of AE 
hits associated with fatigue: (a) ductile mechanism; (b) brittle mechanism; (c) grating 

emission; (d) pencil lead break (PLB) test 

 

Fractographic Analysis: 

At the conclusion of fatigue testing, samples were cut (1 and 2 from early Stage II 

[57 to 60 MPa√m (51.9 to 54.6 ksi√in)], 3 and 4 from middle Stage II [60 to 95MPa√m ( 

54.6 to 86.5 ksi√in)], and 5 and 6 from the late Stage [95 to 128 MPa√m ( 86.5 to 116.5 

ksi√in)] / early stage Stage III [128 to 135 MPa√m (116.5 to 122.9 ksi√in)] of the fatigue 

crack) from the fracture surfaces of the CT specimen and examined with a Scanning 
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fracture surface was dominated by microvoid coalescence [Figures 5.17(a) and (b)]. In 

mid Stage II (crack length around 30 mm) [Figures 5.17(c) and (d)] the fracture surface 

shows quasi-cleavage with some traces of fatigue striations [Figure 5.17(c)]. In late Stage 

II (crack length around 60 mm) [Figures 5.17(c) and (d)] the fracture surface shows 

quasi-cleavage with some traces of fatigue striations [Figure 5.17(c)]. 

Fractographic analysis of SEM images can provide indications of failure 

mechanisms during fatigue crack growth. The failure mechanisms depend on the stage of 

fatigue cracking (Figure 5.17). In this study three representative clusters in stage II of 

fatigue crack growth are considered. Region I [Figure 5.17(a) and (b)] corresponds to 

early stage II [57 to 60 MPa√m (51.9to 54.6 ksi√in)] fatigue crack growth. The 

mechanisms are predominantly transgranular (ductile), although grating action may affect 

the fractured surface and could preclude further in-depth examination. Mid-region Stage 

II [60 to 95MPa√m (54.6 to 86.5 ksi√in)] (intermediate stable crack growth) fracture 

tends to be intergranular (splitting of the ferrite grain) combined with transgranular 

(separation of grain).  

Region III is at the end of stable crack growth (Stage II) [128 MPa√m (116.5 

ksi√in)]. In this region stress intensity has a higher value and hence cracking propagates 

at a higher strain rate (plastic zone formation takes place more quickly). Crack growth 

mechanisms are predominantly transgranular with few brittle mechanisms (cleavage-type 

fractures). The presence of striations, attributed to ductile mechanisms, was observed 

throughout all three regions. At higher stress levels when the maximum stress intensity 

approaches the fracture toughness, crack growth is predominantly due to cleavage 

fracture which produces relatively high amplitude AE. 
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(a)                                                                (b) 

    
(c)                                                         (d) 

    
(e)                                                           (f) 

Figure 5.17. Scanning electron microscopic images in stage II fatigue crack growth: (a, b) 
early stage II; (c, d) middle of stage II; and (e, f) end of stage II. 

The above discussion summarizes two governing mechanisms: one of which is 

predominantly ductile and includes plastic deformation, inclusion disbonding, and 

microvoid coalescence (ligament shearing). The other is predominantly brittle and is 

based on intergranular cleavage fracture. Ductile mechanisms, which are predominant at 
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lower crack growth rates, are due to intergranular crack growth, while the brittle 

mechanism is due to intergranular cleavage crack growth.  

Because splitting of the ferrite gain is affected by initial defects one can conclude 

that the resulting intergranular fracture is primarily a random phenomenon, the frequency 

of which increases with increasing stress intensity range (∆K). On the other hand, 

transgranular fracture characterizes the ductile mechanisms and these are predominant in 

the lower stress intensity ranges. The AE data investigated to date is generally consistent 

with the fractographic evidence.  

5.7 CONCLUSIONS 

The objective of the research presented in this paper is to investigate the AE 

source mechanisms of a steel bridge material, and to characterize the AE waveforms, if 

any, associated with fatigue crack extension. The following conclusions are drawn: 

• Proper data filtering is critical for the successful implementation of the AE technique 

for in-service structural health assessment and monitoring. 

• Digital Image Correlation (DIC) can provide clear forewarning of plastic zone 

formation and subsequent crack extension. This is useful for assessing AE events 

associated with fatigue crack extension. However, not until recent advances in 

computing, digital imaging, and electron microscopy has the acquisition of high-

resolution strain fields and their comparison with microstructure been possible. 

• AE depends on the cracking phenomena. In the early stage, fatigue crack extensions 

do not generally produce detectable AE events as crack growth rates are relatively 

low. At middle and end of stage II fatigue crack extension by means of ductile 
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mechanisms produce small amplitude acoustic emission events. It is hypothesized 

that other contributing phenomena such as plastic deformation, disbonding in the 

microstructure, and generation of microvoids may contribute to AE in fatigue 

cracking. 

• A brittle mechanism via cleavage fracture occurs at higher strain rate while stress 

intensity is relatively high. It is a random phenomena and very challenging in 

extracting from the AE data by monitoring the strain field using digital image 

correlation, as it requires very small plastic deformation.  

• From fractographic analysis, it can be seen that there are two governing mechanisms. 

Ductile mechanisms may produce low amplitude AE events. Brittle mechanisms are a 

more random phenomenon. While higher stress intensity can increase the probability 

of intergranular cleavage fracture, fatigue crack growth in the typical steel bridge 

material studied is dominated by transgranular fracture. 

• Brittle mechanisms produce very energetic, relatively clean front-end, short rise time, 

short duration, and high amplitude AE wave forms. While others have long rise time, 

long duration, and poorly defined peak amplitude AE waveforms. 
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CHAPTER 6 

ASSESSING PROBABILITY DETECTION BASED ON ACOUSTIC 

EMISSION ASSOCIATED WITH FATIGUE CRACK EXTENSION IN 

A572 STEEL 

The probability of Acoustic Emission (AE) detection associated with fatigue 

crack extension in steel bridge components is a challenging problem due to the 

complexity of the AE sources. AE is a very promising technique for structural health 

monitoring, particularly for automated micro-crack detection, as it is generated by the 

material itself, unlike other nondestructive testing techniques (such as impact echo and 

ultrasonics), which require external input sources. The probability of detection is an 

ongoing challenge because AE sensors are not only sensitive to the AE signals but also to 

mechanical noise; and it is therefore difficult to interpret the actual signals related to 

microcrack extension. Probability of detection may also be influenced by the medium of 

wave propagation, threshold settings, sensitivity and frequency range of the sensors, and 

the source to sensor distance. This chapter presents the probability of AE detection 

associated with fatigue crack extension in steel bridge elements as a function of the stress 

intensity range. The AE events associated with fatigue crack extension are assessed using 

moment tensor and b-value analysis. The Poisson distribution and Weibull distribution 

are employed to calculate the probability of AE detection associated with fatigue crack 

extension at different levels of fatigue crack growth which may later facilitate 
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determining the priorities of instrumentation to the in-service steel bridges for health 

assessment, thereby reducing the cost of maintenance and repair.  

6.1 INTRODUCTION 

When a crack is subjected to cyclic loading, the crack tip will travel a very short 

distance in each loading cycle, in the range of 0.10 µm/cycle (4 x 10-6 in./cycle) to 1 

µm/cycle (4 x 10-5 in./cycle) (Hamstad and McColskey 1999, ASNT 2005). As a small 

crack extends, stress free surfaces are created and stress fields in the crack tip abruptly 

redistribute. Typically, at the lower crack growth rate, several thousand cycles are 

required to obtain one valid acoustic emission signal. At the higher crack growth rate, 

approximately one or two cycles are required for a valid event from A514 steel and the 

other steels require 18 to 130 cycles for a valid event (Hamstad and McColskey 1999, 

ASNT 2005). Plastic deformation is the primary source of acoustic emission in metallic 

materials (ASNT 2005); however, they are rarely very energetic events (Scruby 1987). 

When plastic deformation at the crack tip is prohibited, the crack can travel through 

grains by splitting atomic bonds in lattice planes (ASNT 2005). This is called intra- or 

trans-granular cleavage. When the crack propagates along grain boundaries, it is referred 

to as inter-granular cleavage. Cleavage or similar highly emissive mechanisms produce 

very energetic acoustic emissions events (Scruby 1987, Hossain et al. 2012, Hossain et al. 

2013). 

AE transducers are usually made of piezoelectric slabs and have a resonant 

behavior; their sensitivity varies with frequency (ft) and is usually greatest in the range 

from 0.1 to 1.0 MHz (ASNT 2005). Neither the static surface strains nor very high 
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frequency components are sensed. If the crack extends rapidly and then stops so that its 

growth time is about equal to 1/ft, then the emitted wave fronts are dominated by 

frequency components in the detectable range (ASNT 2005).  

6.2 FATIGUE CRACK PROPAGATION 

Crack growth rate curves (for example Figure 6.1) describe crack growth 

behavior.  Such curves show the relationship between crack growth rate, da/dN, and 

stress intensity range, ∆K. Crack growth has three stages depending on the stress 

intensity: Stage I-low speed cracking near the threshold, Stage II-stable cracking, and 

Stage III-unstable cracking. Stage II is of practical importance. Stage III crack growth 

leads rapidly to catastrophic failure, so a cracking level of interest is the transition point 

between stage II and stage III. Stress intensity is a key factor for understanding fatigue 

crack growth behavior.  

 
Figure 6.1. Typical fatigue crack growth rate curve (after Anderson 2005). 
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6.3 PART A: ASSESSING AE DATA ASSOCIATED WITH CRACK EXTENSION 

Fatigue testing was conducted for evaluating the probability of AE detection 

associated with fatigue crack extension using compact tension (CT) specimens. Two CT 

(designated as CT1 and CT2) specimens of ASTM A572 Grade 50 structural steel were 

utilized for AE monitoring during constant amplitude cyclic loading. The specified yield 

strength and ultimate strength of ASTM A572 Grade 50 structural steel are 374 MPa 

(54.3 ksi) and 535 MPa (77.6 ksi), respectively. The effective width (W) of the CT 

specimen is 241 mm (9.5 inch) and the thickness (t) is 12.7 mm (0.5 inch), with an initial 

crack (notch) length of 82.6 mm (3.25 inch) [Figure 6.2(a)]. A clip gage and a 

microscopic video camera were used to monitor crack propagation for the first CT 

specimen (CT1). Digital image correlation (DIC) was employed to monitor the strain 

field near the crack tip for the second CT specimen (CT2). The maximum applied load 

was 65 kN (14.6 kips) with a load ratio (R) of 0.1. Both specimens were loaded at a 

frequency of 2 Hz. Two R15I-AST and six wideband (WDI) sensors were used to collect 

acoustic emission data (Mistras Group, Inc.) [Figure 6.2(b)]. Specially designed magnetic 

hold downs were used to couple the sensors to the face of the steel surface and epoxy was 

used to couple the sensors to the specimen edges. All AE sensors had internal pre-

amplification of 40 dB. The amplitude threshold was set at 45 dB and signals were stored 

and displayed with a DiSP unit (Mistras Group, Inc.). The AE events associated with 

different mechanisms were screened using moment tensor analysis, b-value analysis, and 

visual examination of the waveforms. 
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(a) schematic 

 
(b) photograph during testing with DIC setup 

 
Figure 6.2. Compact tension (CT) specimen. 
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6.4 MOMENT TENSOR ANALYSIS 

Shen et al. (2001) developed a moment tensor inversion procedure by using only 

P-wave amplitudes. The computer code SiGMA (simplified Green's function for moment 

tensor analysis) is commonly used for this procedure. For this study a MATLAB (Matlab 

2010) code was developed for solving equation (6.1) by selecting the P-wave portion 

from the full-space Green's function of homogeneous and isotropic material- 

 

where Cs = coefficient containing the sensor sensitivity to be calibrated (25 volts/mbar), 

R = the distance between the source and the sensor, and R(s, r) = the reflection coefficient 

associated with the direction of sensor sensitivity s and direction of wave incidence r 

from the source, as shown in Figure 6.3. r1, r2 and r3 are direction cosines from the source 

to the sensor. The co-ordinate definition (x, y, z) or (1, 2, 3), transducer locations and 

typical source location and R are shown in the Figure 6.4. The reflection co-efficient, R(s, 

r) is calculated using equation (6.2) as per Giurgiutiu (2007)- 
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Where density of ASTM A572 Grade 50 structural steel ρ = 7850 kg/m3, and the case and 

face materials of WDI sensor are stainless steel (304) and ceramic, respectively (Mistras 

Group, Inc.). The material information of ceramic is not provided. Therefor ceramic 

material can be Porcelain (Specific Gravity, G = 2.2-2.4), Alumina Porcelain (G = 3.1-
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3.9), Zirconia Porcelain (G = 3.5-3.8), Alumina Silicate Refractory (G = 2.2-2.4), 

Magnesium Silicate (G = 2.3-2.8), Steatite (G = 2.5-2.7), and/or Forsterite (G = 2.7-2.9) 

(Wikipedia.org). The density of 2700 kg/m3 is considered for ceramic face material of the 

sensor face. Therefore, density of steel of CT specimen, ρ = 7850 kg/m3 and the ceramic 

material, ρ* = 2700 kg/m3.  

Table 6.1. Wave speed calculation. 
 

Material Elastic Modulus, E 
(GPa) 

Density 
(kg/m3) 

Axial speed, Cp=√(E/ρ) 
(m/s) 

Steel 200 7850 5048 
Ceramic 15 2700 2357 

  

The transducers (1, 2, 3, 4, and 5) are attached on the edges of the CT specimens, 

whereas the sixth transducer is attached on the surface (out of plane) as shown in Figure 

6.4 to avoid non-trivial solution of the moment tensor. The direction of the transducer 

sensitivity (s), �, as shown in Figure 6.3 (typical) is summarized in Table 6.2. The 

direction of wave incidence (r), �*, depends on the location of the transducers as well as 

the source location of the AE events. Therefore the reflection co-efficient R(s, r) also 

varies accordingly. A typical cosine of wave incidence and reflection co-efficient of the 

wave R(s, r) are summarized in Table 6.2. When the source location and the amplitudes 

of the first motion are known, the six independent components of the moment tensor mpq 

can be determined by solving the simultaneous equations of equation (6.1) for each 

individual AE event. 

Applying the eigenvalue analysis to the moment tensor, the crack kinematics can 

be obtained. A classification of the crack types into shear mode, tensile mode, and mixed 

mode can be quantitatively made. 
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Figure 6.3. AE wave observation (after Shen et al. 2001). 
 
 

 
 

Figure 6.4. Co-ordinate and transducers location. 
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The eigenvalues of the moment tensor are decomposed into X = shear component; 

Y = deviatoric (compensated linear vector dipole; CLVD) component and Z= hydrostatic 

component as shown in Figure 6.5. Three eigenvalues are normalized and uniquely 

decomposed into three ratios X, Y, and Z. Conveniently, the following tensor, mpq, is 

defined from the vector components bk and nl and is referred to as a moment tensor: 

where Cjklm= elastic modulus. Solving the characteristic equations of equation (6.3), three 

eigenvalues are obtained. One decomposition of the eigenvalues can be developed to 

classify the AE source into a tensile crack and a shear crack depending on the X values. 

Setting the maximum eigenvalue X for the shear crack, the principal components become 

X, 0, and -X. In the pure tensile crack, three eigenvalues are decomposed into deviatoric 

components (CLVD, or compensated linear vector dipole) and hydrostatic mean 

components (the isotropic part), of which the maximum values are indicated by Y and Z, 

respectively.  

Assuming an AE source as a crack of mixed mode, the tensor components are 

considered as the sum of tensile and shear components. Thus, three eigenvalues are 

decomposed into three ratios X, Y, and Z as follows: 1.0 = X + Y + Z. The intermediate 

eigenvalue/the maximum eigenvalue = 0 - 0.5Y + Z. The minimum eigenvalue / the 

maximum eigenvalue = - X - 0.5Y + Z. After determining the eigenvalues of the moment 

tensor, the above decomposition is solved and the ratios X: Y: Z are determined. Based 

on the results of numerical experiments, a simple criterion is proposed for the 

classification of crack types.  

           lkpqklpq nbCm =  (6.3) 
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Figure 6.5. Eigenvalue decomposition of the moment tensor. 
 

When the ration, X, is greater than 60%, AE source is referred to as a shear crack. 

In the case less than 40%, AE source is classified as a tensile crack. In the procedure, the 

ratios of eigenvalues and the relative values of moment tensor components are necessary. 

It implies that amplitude of the first notion in equation 6.1 should be recorded as relative 

values. Consequently, the sensor calibration is only needed to compensate the equal 

sensitivity. In a general sense, the relative value X shows the contribution of shear crack 

motion. From the relative value of X, each crack growth event can be classified into 

either a tensile or a shear failure. A pure tensile crack implies that the crack vector is 

parallel to the crack normal, in which case X becomes 0 %. In contrast, a pure shear crack 

corresponds to the case X = 100%, where the crack vector is perpendicular to the crack 

normal. Thus, all events can be classified into tensile cracks (X < 40%), mixed cracks 

(40% < X < 60%), or shear cracks (X > 60%). Sample calculations of moment tensor and 

composition ratios of Eigen values are shown in Figures 6.6, 6.7 and Table 6.2.  
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Figure 6.6. Presentation showing a typical waveform set. 
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Figure 6.7. Presentation showing a typical waveform set (zoomed to assess amplitude of 
first wave amplitude for P-wave) 

 
 
 
 
 
 
 
 
 
 
 
 

-4

-2

0

2

4

200 220 240 260 280 300

V
o

lt
s
 

Time (µsec) 

Time  4629.1946975 sec; Ch  1 

-0.0235 

-4

-2

0

2

4

200 250 300 350 400 450 500

V
o

lts
 

Time (µsec) 

Time 4629.1946985sec; Ch 4 

0.02594 

-4

-2

0

2

4

200 220 240 260 280 300

V
o

lt
s
 

Time (µsec) 

Time 4629.1946945 sec; Ch 2 

-0.03723 

-4

-2

0

2

4

200 220 240 260 280 300

V
o

lts
 

Time (µsec) 

Time  4629.1946935 sec; Ch 5 

-0.01984 

-4

-2

0

2

4

200 220 240 260 280 300

V
o

lts
 

Time (µsec) 

Time  4629.1946885 sec; Ch  3 

-0.00153 

-4

-2

0

2

4

200 220 240 260 280 300

V
o

lt
s
 

Time (µsec) 

Time  4629.1946855 sec; Ch 6 

0.00916 



www.manaraa.com

 

121 
 

Table 6.2. Sample Output from the Moment Tensor Analysis (in metric system) 
*** AE Source Inversion*** 
[Channel Data] 

Ch. Transducer Position (m) Arrival Time Amplitude 
 xt yt zt second Volt 

Ch 1 0.09525 0 0.0000 4629.1946975 0.02350 
Ch 2 0.0000 0.0762 0.0000 4629.1946975 -0.03723 
Ch 3 0.0000 0.1524 0.0000 4629.1946885 -0.00153 
Ch 4 0.0000 0.2286 0.0000 4629.1946985 0.02594   
Ch 5 0.09525 0.3048   0.0000 4629.1946935 -0.01984 
Ch 6 0.09525 0.0762 0.0063 4629.1946855 0.00916 

*Velocity of P-wave : 5048     (m/sec) (Table 6.1) 
*Poison’s ratio        : 0.2900 
 
[Solution] 
Step 1: AE Source Location (m)             xs = 0.1135    ys = 0.1502          zs = 0 (assume) 

Step 2: Direction Cosines Transducer 
Direction 

Reflection Co-efficient 

Channel r1
* r2

* r3
* x y z R(s, r) 

Ch 1 0.121 0.993 0 0 1 0 -0.2777 
Ch 2 0.838 0.546 0 1 0 0 -0.1975 
Ch 3 1.000 -0.019 0 1 0 0 -0.2808 
Ch 4 0.823 -0.568 0 1 0 0 -0.1889 
Ch 5 0.117 -0.993 0 0 -1 0 -0.2777 
Ch 6 0.239 0.968 -0.082 0 0 -1 -0.2657 

*  r1= (xs-xt)/√[(xs-xt)
2+(ys-yt)

2+(zs-zt)
2] 

    r1= (ys-yt)/√[(xs-xt)
2+(ys-yt)

2+(zs-zt)
2] 

    r1= (zs-zt)/√[(xs-xt)
2+(ys-yt)

2+(zs-zt)
2] 

Step 2: Moment Tensor Solution 
0.0358 0.1642 0.0451 
0.1642 1.0000 0.3177 
0.0451 0.3177 0.0693 

 

 
Step 3: Eigen Value Analysis 
Eigen vector, v =                                                 Eigen value, e =       
-0.1339 0.9789 0.1544  -0.0295 0 0   
0.3116 -0.1063 0.9442  0 0.0099 0   
0.9407 -0.1745 0.2908  0 0 1.1247   
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Table 6.2. Sample Output from the Moment Tensor Analysis (continue) 

Normalized Eigen value, en(diagonal) = 
 
X+Y+Z = e1/e1 = 1.1247/1.1247= 1                                                                               
(A) 
0-0.5Y+Z = e2/e1 = 0.0099/1.1247 = 0.0088                                                                 (B) 
-X-0.5Y+Z = e3/e1 = -0.0295/1.1247-0.0263 = -0.0262                                                (C) 
 
X= Ratio of the maximum shear contribution; Y = Ratio of tensile component; Z = 
Ratio of the maximum isotropic tensile. 
 
Tensile crack :X < 40%; Shear crack: X > 60%; Mixed mode: 40% ≤ X ≤  60% 
 
Step 4:  Source characterization solution 
 
Solving Equations A, B and C for X, 
 
Shear, X (percentage) = 0.09 < 40% '****** Therefore, 
 
Type of crack:*****Tensile Crack***** 

 

6.5 AE DATA FILTERING 

Signal identification and data filtering is a necessary step for acoustic emission 

monitoring. In addition to plastic deformation and crack extension, AE sensors are also 

sensitive to unrelated noise. Noise mainly arises from grating between fracture surfaces 

and abrasion in the load train. Grating emission occurs due to friction between the 

fractured surfaces at crack closure and crack opening. To minimize grating emission, AE 

collected below 80% of the maximum load was eliminated. 

Specialized grating emission tests also were performed to understand the 

characteristics of noise due to grating. In these tests, the magnitude of the cyclic load was 

reduced so as to be insufficient for crack growth. Pencil lead break tests were also 

performed to understand the characteristics of genuine hits. In a burst-type waveform, 
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typical parameters include amplitude, rise time, duration, and emission counts. The 

waveform from grating emission has long rise time, long duration, and poorly defined 

peak amplitude. The waveform from crack related events is characterized by a relatively 

clean front-end, short rise time, short duration, and high amplitude. Based on the 

characteristics of waveforms, Swansong II filtering was also employed to minimize 

mechanical noise. Swansong II filtering utilizes a technique which takes advantage of 

specific characteristics of unwanted hits (longer duration and low amplitude), as AE hits 

arising from sliding or mechanical rubbing typically have relatively longer duration and 

lower amplitude.  

6.6 ACOUSTIC EMISSION DATA  

The total number of AE hits recorded throughout the test was 312,527 and 

150,615, for specimen CT1 and CT2 [Figure 6.8(a)], respectively. The term ’hit’ refers to 

the detection and measurement of an AE signal on any individual channel and the term  

‘event’ refers hits of 3 or more sensors within a particular period of time. Based on the 

characteristics of the waveform of AE hits, Swansong II filter and 80 % of the peak load 

filters are applied. Swansong filter is based on the amplitude and durations of the AE hits. 

Mechanical noises have higher duration and relatively low amplitude. AE hits. Details of 

the Swansong II filter and load filter may be found in article of Yu et at. (2011).  

By visual inspection of the waveforms, many of the AE hits are considered as hits 

associated with the grating or friction between the fracture surfaces during opening and 

closure of the crack. Previous study showed the crack extends above the 80 % (52 kN) of 

the peak load (65 kN). The idea for load filter is fatigue crack extents during cycling 
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loading only during opening of the crack. Among those 1,484 (less than 0.5%) of the hits 

were classified as being of interest when the data was filtered to eliminate hits occurring 

below 80% of the peak load for CT1. Whereas after employing the 80% load filter and 

Swansong II filter, AE data contains lots of noises, remaining hits 107,642, which is 

approximately 70% of the total hits in CT2 specimen [Figure 6.8 (b)]. Though the dataset 

has been filtered to exclude hits below 80% of peak load, some AE events may still be 

due to friction between the fracture surfaces. Synchronization of AE data with parametric 

(load) shows the presence of AE in each cycle during crack opening as well as crack 

closure also. From CT1 it can be seen that less than 1% of the total hits during fatigue 

testing may be potentially associated with fatigue crack extension, whereas the remaining 

signals may be associated with mechanical noise in the loading train, reflections, and 

grating emissions. The waveforms of these AE events for different channels were 

visualized manually and it seems to indicate that these AE events are generated from 

friction or reflections.  

To minimize acoustic emission associated with reflections the hit lockout feature 

was used. The hit lockout value is a length of time or distance, which controls the interval 

between consecutive hits. The hit lockout value used in this test was 40 micro-seconds. 

This hit lockout time was calculated based on the specimen dimension and wave speed. 

Calculated average wave speed was 5,770,000 mm (227,000 inch) per second and the 

wave travels a distance of 231 mm (9.10 inch) during a 40 micro-second period. The 

distance between the crack tip and the edge of the specimen is in the range of 114 mm 

(4.49 inch) to 146 mm (5.75 inch). Any energy release at the crack tip will travel as 

elastic waves and hits the sensors directly and part of the wave reflected at the edge of the 
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specimen, and come back toward the sensors. For example, any crack extension may 

produce an elastic wave, travel through the medium, hits sensor 3 directly (shortest 

distance from crack tip) and top (face where sensor 5 is attached) or bottom edge (face 

where sensor 1 is attached), as shown in Figure 6.2, simultaneously. Depending on the 

energy of the incident wave, part of the incident energy may reflect from the edge, travel 

toward and hit sensor 3. Therefore the time difference between these two successive hits 

is in the range of 13 (3 inch/227,000 inch/sec) to 33 (7.5/227,000 inch/sec) micro-

seconds. Hence after receiving the direct hit, the sensor will lock out and will not receive 

any hit when the time difference between two successive hits is less than 40 micro-

seconds. 

Furthermore AE data was also plotted against the load data. In most cases AE 

events were recorded during crack closure and high amplitude AE events which may 

generate reflections were not present immediately before these events. Though the dataset 

has been filtered to exclude hits below 80 % of peak load, these AE events may still be 

due to friction between the fracture surfaces. The other potential source can be 

mechanical noise from the loading pins.  

To minimize this noise, source location filtering (SLF) was employed. Only the 

events near the crack tip were extracted by using MATLAB code based on the source 

sensor distance and the sequence of the arrival time of the waveforms. The basic idea is 

that the closest sensors are triggered by the waveform first and vice-versa. After 

employing the SLF technique, the remaining hits and AE events are 2,241 and 334, 

respectively.  
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The source location based filtering technique possesses several advantages over 

other filtering methods, such as high sensitivity and ability to filter the crack related AE 

data located along the source of damage. Source localization is an important part of any 

monitoring process and can also be utilized as a filtering method. The other advantage of 

SLF method lies in the fact that the proper filtering algorithm can detect the real hits as 

they occur, that is, in real time for reduction of the unrelated AE data; whereas other 

filtering methods such as Swansong II filter are often customized to the dataset and are 

therefore employed after the data has been acquired. The sequence of arrival time (TOA) 

of AE waves is utilized based on the sensor location on the CT specimen and the location 

of the defect source is determined by minimizing the Chi Squared error function. More 

details of Chi Squared Error function can be found in literature (PAC 2004, ASNT 2005). 

Moment tensor and b-value analysis was employed to assess the AE events 

associated with different failure mechanisms. According to Pollock (1981), a different 

failure mechanism results in distinct b-values. It is in the range of 0.7-1.5 for brittle 

fracture mechanisms in steel and can be as high as 2.0–4.0 for plastic deformation prior 

to crack extension in steel material. Based on the moment tensor analysis as discussed in 

previous section, b-value and visual inspection of waveforms, AE events associated with 

the fatigue crack extension (cleavage fractures) are extracted from the test data. This 

process is shown in Figures 6.9 through 6.11. All AE events associated with the tensile 

crack (brittle crack extension - cleavage fracture) are marked with a square bullet marker 

as shown in Figures 6.9 through 6.11.  
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Figure 6.8. Test results CT2: (a) 
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(a)                                                           (b) 

Test results CT2: (a) AE hits without filter; (b) AE hits after 80% of peak load 
and Swangsong II filter. 

 
 
 

 

(a)                                                           (b) 

Synchronization of b-value with AE data: (a) full data in CT specimen (CT1); 
zoomed to extract AE events associated with brittle mechanism via b-value (CT1)
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(a)                                                           (b) 
 

Figure 6.10. Synchronization of AE data with b-value and moment tensor: (a) full AE 
data; (b) zoomed to extract AE events associated with brittle mechanism. 

 
 
 

 

(a)                                                           (b) 
 

Figure 6.11. Synchronization of AE data: (a) AE data and b-value in CT specimen (CT2); 
(b) AE data, b-value and moment tensor analysis in CT specimen (CT2). 

 
 
 
 
 
 
 

0

20

40

60

80

100

120

0

2

4

6

8

10

12

0 2000 4000 6000 8000

b-
va

lu
e 

Time(sec) 

A
m

pl
itu

de
 (

dB
) 

A
m

pl
itu

de
 (

dB
) AE 

b-value 
brittle mechanisms 

0

20

40

60

80

100

120

0

2

4

6

8

10

12

2400 2900 3400 3900 4400

b-
va

lu
e 

Time(sec) 

A
m

pl
itu

de
 (

dB
) 

A
m

pl
itu

de
 (

dB
) AE 

b-value 
brittle mechanisms 

40

50

60

70

80

90

100

0

2

4

6

8

10

0 2000 4000 6000 8000 10000 12000

b-
va

lu
e 

Time(sec) 

A
m

pl
itu

de
 (

dB
) 

A
m

pl
itu

de
 (

dB
) 

AE 

40

50

60

70

80

90

100

0

2

4

6

8

10

0 2 4 6 8 10 12

b-
va

lu
e 

Time(sec×103) 

A
m

pl
itu

de
 (

dB
) 

A
m

pl
itu

de
 (

dB
) 

AE 

b-value 

brittle mechanisms 



www.manaraa.com

 

129 
 

6.7 PART B: PROBABILITY OF AE DETECTION   

Several statistical forms including the Poisson distribution, Weibull distribution 

and the Gumbel distribution may be applied for Probability of Detection (POD) 

calculations (Pollock 2009). For the study described here, the Poisson distribution and 

Weibull distribution were utilized for POD calculations. 

6.8 WEIBULL DISTRIBUTION 

The probability density function of a Weibull random variable is (Papoulis 1984):  
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where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. If 

the quantity x = the number of AE events associated with brittle failure, the Weibull 

distribution gives a distribution for which the brittle failure rate is proportional to a power 

of time. A value of k > 1 indicates that the failure rate increases with time. This happens 

if there is an "aging" process, or parts that are more likely to fail as time go on. Because 

the steel element subjected to fatigue damage will be fail after a certain period of time, 

and the rate of AE events increases with time, the Weibull distribution can be employed 

for POD calculation. The distribution function for the Weibull distribution is:  
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6.9 POISSON DISTRIBUTION 

Moment tensor, b-value analysis of the AE events generated in the fatigue test 

leads directly to number of events associated with the highly emissive mechanisms. Then 

it will be a matter of statistics to determine the probability that at least one signal 

associated with brittle mechanisms that produce detectable acoustic emission. For 

simplicity, a Poisson distribution may be used to determine the expected number (x) of 

associated to brittle mechanisms, the probability of getting none associated to brittle 

mechanisms is e-x. Consequently, the probability of getting at least one associated to 

brittle mechanisms is (1 - e-x).  

6.10 PROBABILITY OF CLEAVAGE FRACTURE 

Beremin et al. (1983) developed the idea of cleavage fractures into a “weakest 

link” statistical model. According to this model a certain volume, V, of material ahead of 

the crack tip (usually the volume of the plastic zone) is assumed to have a distribution of 

microcracks of different lengths. Catastrophic failure is assumed to take place if a crack 

of critical length is found in this volume. This microcrack is a weakest link. It is assumed 

that the volume V can be divided into smaller volumes V0, which must be big enough so 

that the probability of contains a microcrack of critical length is not negligible. At the 

same time V0 must not be small enough for the assumption of a homogenous stress state 

over V0 to be reasonable.  

Thus the probability of existing microcrack:  
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where g(a)da is the number of microcracks per volume V0 with stresses required to 

propagate them between the crack length a and a+da. Usually a three-parameter Weibull 

probability distribution function (Weibull 1951) is used to express g(a)da: 
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where Iσ is a maximum principal stress in V0, m is a shape parameter, uσ is a scale 

parameter and thσ is an offset parameter (a threshold stress) (shown in equation 6.8), 

required to propagate the largest feasible microcrack which can be given by equation 

(6.7): 
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where wσ is called Weibull stress (Beremin et al. 1983). A progressive brittle fracture 

statistical model based on “chain-of-bundles” statistics (Gücer and Gurland 1962) was 

proposed by Ruggieri et al. (1995). In this model, several critical events are allowed 

before the catastrophic failure takes place. The analysis leads to Weibull statistics and 

effectively to the same relations as expressed by equations (6.7) and (6.8) (Ruggieri 

1998). Other forms of equation can also be used. Kroon and Faleskog (2002) introduced 

the influence of applied strain on g(a)da and used an exponential distribution instead of 

Weibull (equation 6.9): 
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where mσ and c are material parameters and mσ corresponds to the stress needed to 

propagate a mean size microcrack. In the model developed by Folch and others, the 

model assesses the onset of cleavage of each damage cell individually (Folch and 

Burdekin 1999, Folch et al. 1997). In other words the integration in equation (6.8) is 

performed over a volume of material within an individual cell. When the reference 

volume, V0, is used as the cell volume and the threshold stress, thσ , is equal to zero then 

the Weibull stress, wσ , is the maximum principal stress. Therefore, equation (6.7) will 

have the following form:  

 ])/(exp[1 m
uI σσφ −−=  (6.10) 

where Iσ is a maximum principal stress, m is a shape parameter, and uσ is a scale 

parameter which can be taken as three times the ultimate strength because of the tri-

axiality effects at the crack tip. Hence, the probability of cleavage is based only on the 

ratio of the maximum principal stress to the scale parameter of a Weibull distribution.  

In this approach the probability of cleavage of each cell can be calculated at the 

same time as its constitutive response. The cleavage initiation sites can now be identified 

and the brittle crack front can be obtained explicitly. Any model has to be calibrated for a 

particular material, so that model parameters can be considered true material properties. 

Instead of calibrating the model parameter, from equations (6.10) and (6.11), it can be 

seen that the probability of cleavage fracture increases with increasing the applied stress 

or strain as discussed earlier. Both equations can also be modified accordingly and 
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employed for computing the probability of detectable AE events that may be generated 

during the fatigue crack growth.  

The crack intensity factor is defined as: 

 aYK πσ=  (6.11) 

where σ is a uniform tensile stress perpendicular to the crack plane, Y is a dimensionless 

parameter that depends on the geometry, and a is the crack length. The range of the stress 

intensity factor can be calculated using ASTM (2006) standard empirical equation as 

shown below and then stress, σ, can be evaluated at a specific crack length. A clip gage 

was used to record the crack mouth opening displacement (CMOD), ‘d’ (shown in Figure 

6.2) and then the ASTM (2006) empirical expression was used to calculate the crack 

length, ‘a’ (from the center of the loading line, Figure 6.2). The empirical expression is: 

 )6.21439.121482.2364.186695.4001.1W(a 5432
xxxxx uuuuu −+−+−=   (6.12) 

where [ ] 1

max 1/
−

+⋅⋅= PdtEux
   (6.13) 

where the effective width of the CT specimen (W) is 241.3 mm (9.5 inch) as shown in 

Figure 6.2 and the specimen thickness t is 12.7 mm (0.5 inch); the Young’s modulus (E) 

of ASTM A572 G50 steel is 200 GPa (29,000 ksi) and Pmax is the peak of the cyclic load. 

The stress intensity range is determined by using the following equation (ASTM 2006):   

 )6.572.1432.1364.4886.0(
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tw
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where ∆P= Pmax-Pmin and α is equal to a/W. By using equation (6.14), the calculated 

critical crack length, ac = 55.4 mm (2.18 inch) (from initial crack tip) when the maximum 

stress intensity at the crack tip reaches to 128 MPa√m (116.5 ksi√in).  
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From quantitative AE source characterization (moment tensor and b-value), AE 

events associated with brittle crack extension were assessed and plotted with time on the 

horizontal axis. For a specific time period of interest, the probability of detection of a 

brittle crack event can be determined as a function of the stress intensity range as shown 

in the following sections.   

6.11 RESULTS AND DISCUSSION 

From the AE data and b-values shown in Figures 6.9 through 6.11, the majority of 

the AE events are less energetic and the corresponding b-value is higher than 1.5. Hence, 

the fatigue crack growth is dominated by ductile mechanisms such as plastic deformation, 

inclusion disbonding, generation of microvoids, and ligament shearing between the 

microvoids. Therefore it can be considered that a large majority of the fractured surfaces 

are created by relatively quiet mechanisms such as microvoid coalescence. The total 

numbers of AE hits and events detected (defined as those crossing the threshold of 45) 

are 1,484 and 125 for CT1 and 2,241 and 334 for CT2, respectively. The amplitudes of 

these AE hits, AE events and corresponding moment tensor, and b-value distribution are 

shown in Figures 6.9 through 6.11. Therefore it is clear that only a fraction (ψ) of the 

total crack surfaces is associated with highly emissive mechanisms such as transgranular 

or intergranular cleavage. In this crack growth scenario, the fraction ψ is a key descriptor 

of material emissivity. At the beginning of the fatigue test, around a thousand cycles are 

required for receiving the first energetic AE event which may be associated with brittle 

mechanisms containing energetic acoustic emission. This high peak-amplitude is related 

to brittle crack propagation as determined through quantitative source characterization.  
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The detectability of AE also depends on the instrument threshold. Pollock (2010) 

used 50 dB as the threshold setting for similar AE monitoring to minimize noise in the 

data. In the experiments described here, the instrument threshold was set to 45 dB. 

Figures 6.9 through 6.11 show that brittle crack extension produces acoustic emission of 

amplitude larger than 65 dB. All sensor locations are close to the crack tip and therefore 

the attenuation problem is minimized even though the b-value is not significantly affected 

by attenuation.  

The relationship between AE and brittle crack extension is screened through b-

value and moment tensor analysis for both specimens and additionally through strain 

field monitoring with DIC in specimen CT2. At lower crack growth rates, defined as 1.9 

× 10-3 mm/cycle (7.5 × 10-5 in/cycle) to 2.4 × 10-3 mm/cycle (9.5 × 10-5 in/cycle), several 

thousand cycles are generally required to obtain one energetic acoustic emission signal 

associated with brittle mechanisms associated with crack growth. At the higher crack 

growth rate, defined as 5.2 × 10-3 mm/cycle (2.1 × 10-4 in/cycle) to 2.9 × 10-2 mm/cycle 

(2.2 × 10-3 in/cycle), approximately one or two cycles are required for a valid event 

associated with a brittle mechanism. From a previous study (Pollock 2010), the 

probability of AE detection (POD) drops to 40-60% when the monitoring duration 

changed to 1,000 cycles instead of 2,000 cycles with the same initial flaw size. This result 

can be useful in developing an AE test, because it shows how the reliability of the 

detecting a brittle mechanism will depend on the duration of monitoring.  

For the study described here, 2,000 cycles was employed as the AE monitoring 

duration in determining the probability of AE detection due to brittle mechanisms in this 

study. Once the AE events associated with highly emissive mechanisms are counted for 
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2,000 loading cycles, then statistical calculations give the probability of at least one AE 

event due to a brittle mechanism within this duration. 

Figures 6.12 through 6.14 show the predicted probability of detecting a highly 

energetic, brittle, mechanism as a function of stress intensity range (∆K) for 2,000 cycles 

of monitoring. With increasing crack severity, as determined by the cyclic stress intensity 

factor, ∆K, the rate of AE activity increased and thus the probability of AE detection 

associated with brittle mechanisms approaches 100% for 2,000 cycles of monitoring 

when the stress intensity range (∆K) approaches 73 MPa√m (66.4 ksi√in) for CT1 as 

shown in Figure 6.12 (a) and 75 MPa√m (68.3 ksi√in) for CT2 as shown in Figure 6.12 

(b) assuming a Poisson distribution. The same trend was also found for a Weibull 

distribution. For a Weibull distribution, the probability of AE detection associated with 

brittle mechanisms for 2,000 cycles of monitoring approaches 100% when the stress 

intensity range (∆K) approaches 73 MPa√m (66.4 ksi√in) for CT1 as shown in Figure 

6.13 (a) and 75 MPa√m (68.3 ksi√in) for CT2 as shown in Figure 6.13 (b).  

Figure 6.12. Experimental results for probability of AE detection: (a) Specimen CT1; (b) 
Specimen CT2. 
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Figure 6.13. Experimental results of probability of AE detection: (a) Specimen CT1; (b) 
Specimen CT2. 

A comparison of POD between CT1 and CT2 is shown in Figure 6.14 (a). The 

Folch model [Figure 6.14(b)] also shows the same trend for probability of brittle crack 

extension. In this model, the probability of cleavage of each cell is calculated at the same 

time as its constitutive response. The cleavage initiation sites can now be identified and 

the brittle crack front can be obtained explicitly. Any statistical model has to be 

calibrated for a particular material, so that model parameters can be considered true 

material properties. Instead of calibrating the model parameter, if different m values such 

as 2.5, 4.0,  6.0 and 9.0 are considered and plotted (equation 6.9) with MATLAB (Matlab 

2010), it can be seen that the probability of cleavage fracture increases with increasing 

applied stress as discussed earlier. The values of probability of detection associated with 

brittle cleavage fracture increases at a higher rate with the higher values of m. Both 

experimental plots and the plots obtained from equation 6.9 show similar trends in the 

probability of cleavage fracture and resulting acoustic emission.   

The shape of both curves matches well. It is important to note that the x-axis of 

Figures 6.14 (a) and 6.14 (b) are not the same. The stress intensity range is used in Figure 

     
(a)                                                     (b) 
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6.14 (a) and the maximum principal stress is used in Figure 6.14 (b) along x-axis. 

However, the stress intensity range and stress at the crack tip are complementary and can 

be calculated by using equation (6.9). Both the experimentally obtained probability 

diagram and the Folch equation may also be utilized for computing the probability of 

detection based on AE for in-service steel bridges as the fatigue crack growth rate 

depends on the stress intensity range. For a particular loading condition and crack profile, 

stress intensity can be calculated and hence the probability of detection can be estimated 

even through it is limited to Mode I fatigue cracking at this time.  

 Figure 6.14. Probability of cleavage fracture based on: (a) experimental data; (b) Folch 
model 

6.12 CONCLUSIONS 

The objective of this study was to assess the probability of detection of 

mechanisms associated with crack growth based on AE monitoring during cyclic loading 

of steel bridge material (ASTM A572). Extensive source characterization of the acoustic 

emission was carried out using different quantitative techniques such as moment tensor 

and b-value to extract the highly energetic AE events related to the crack growth from 

other sources. Results show that ductile mechanisms such as plastic deformation and 
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microvoid coalescence are dominant in the majority of the fatigue crack growth area and 

contribute to generate a large number of relatively small amplitude (around 50dB) AE 

signals. Only a small fraction of the total crack surface is associated with highly emissive 

mechanisms such as transgranular or intergranular cleavage that can be considered the 

key descriptor of emissivity in ASTM A572 Grade 50 steel. At higher stress levels the 

frequency of cleavage fracture increases which produces very energetic AE events. The 

following conclusions are drawn:  

• Moment tensor and b-value are useful quantitative tools for extracting AE 

events associated with different mechanisms. However, in the case of 

moment tensor analysis a dense sensor array is required. 

• Quantitative source characterization can provide insights to the source 

mechanisms and hence assist in assessing highly emissive AE events.  

• Cleavage fracture (also referred to as tensile fracture) mechanisms produce 

highly energetic acoustic emission events. In contrast, ductile fracture 

mechanisms produce relatively low amplitude acoustic emission. 

• Cleavage fracture occurs randomly. It increases with increasing stress 

intensity at the crack tip. At higher stress levels, the crack tip advances by 

intergranular cleavage fractures that produce relatively high amplitude 

acoustic emission. 

• The probability of detection of acoustic emissions generated by brittle 

mechanisms increases with increased stress intensity and converges to 100% 

for duration of 2,000 loading cycles. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The overall objective of this research study is to assess the probability of 

detection of fatigue crack extension based on acoustic emission in ATSM A572 G50 

steel. This material is representative of materials widely used in the steel construction 

industry. The study consists of two main parts. The first part deals with assessing AE data 

of different failure mechanisms using fractographic analysis of scanning electronic 

microscope (SEM) images, synchronization of AE data with the strain field using digital 

image correlation (DIC), and data discrimination of AE events associated with highly 

emissive mechanisms. The second part is related to evaluation of the probability of 

detection using statistical approaches.  

7.1 SUMMARY  

The significant findings from the research are related to assessing AE events 

associated with different failure mechanisms during fatigue crack growth in A572 steel 

and assessing through experimental means the probability of detection associated with 

highly emissive mechanisms. The approach included AE data analysis, fractographic 

analysis of SEM images, moment tensor analysis for characterization of micro-level 

cracking phenomena, and characterization of corresponding AE signals. 
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The following conclusions can be drawn: 

1. The raw AE data contains a significant portion of non-relevant AE hits from 

friction associated with crack closure (referred to in some instances as ‘fretting’) 

and mechanical noise. Therefore, it is imperative that proper data filtering be 

performed for structural health monitoring and assessment using the AE method. 

2. Two governing mechanisms - ductile mechanisms and cleavage fracture - were 

present during fatigue crack growth in the ASTM A572 G50 steel used for this 

study.  

3. Moment tensor analysis and b-value analysis can provide useful insight for 

assessing source mechanisms of AE events. 

4. A key finding is that micro-void coalescence and plastic deformation do not 

generally produce high amplitude AE events for the steel bridge material 

investigated. 

5. SEM fractographic analysis underpins the hypotheses formulated based on AE 

data analysis and confirms the failure mechanisms that have been reported to exist 

in ASTM A572 G50 steel. 

6. For the duration used in this study, the probability of AE detection increases and 

slowly converges to 100% with increasing stress intensity range at the crack tip. 

7.2 IMPLICATIONS FOR PRACTICE 

The crack growth rate curve for ASTM A572 G50 steel can be divided into three 

main regions that are dependent on the stress intensity range. The stress intensity range is 

the main contributing factor that determines the cracking behavior. It encompasses all the 

parameters associated with fatigue crack behavior (i.e. load and geometry of the 
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specimen). For a single cracked steel girder bridge (Mode I crack), the stress intensity 

range can be determined for a specific traffic load, crack length, and geometry of the 

structural element. Hence, the corresponding probability of detection based on AE data 

can be determined. Based on the probability of AE detection, bridge owners can set 

priorities of instrumentation (installation of AE sensors for structural health monitoring 

and assessment), repairs, and maintenance.  

7.3 DIRECTIONS FOR FUTURE RESEARCH 

1. Fatigue tests reported herein were conducted with constant amplitude cyclic 

loading. In real applications, however, the structure will experience varied 

service load cycles (due to passenger cars, trucks, and other vehicles). It is 

recommended that source mechanisms and the AE data from subsequent 

loadings be the focus of further studies. 

2. A key component of this investigation was to study failure mechanisms at 

different stress intensity ranges. Fractographic analysis of SEM images was 

used to determine failure mechanisms in two CT specimens fabricated from 

structural A572 steel. Instead of studying a few cluster areas, a more detailed 

SEM observation should be conducted to more accurately identify failure 

mechanisms in a single point and associated AE events. Furthermore, SEM is 

limited to observation of failure mechanisms on the fractured surface of the 

specimens. Recently developed technology can perform the internal micro-

structural observation. An example of such a technique is high resolution X-

ray CT (computed tomography) (ASTM 1992). 



www.manaraa.com

 

143 
 

3. Highly controlled experiments with specialized sensors and sensor arrays 

should be pursued to increase confidence related to source location of the AE 

events, particularly for the case of moment tensor analysis.  

4. Modern statistical relationships between crack growth and AE events may be 

developed using AE, DIC, SEM, and other parametric data. 

5. Further study of source mechanisms and associated acoustic emission when 

the sensors are placed near the crack tip is recommended to study the effects 

of the traveling medium by placing the sensor at different distances. 

6. The probability of detection studied was limited to Mode-I fatigue cracking 

and only for the base metal. In reality fatigue cracking may initiate and grow 

in the weldment and further studies related to this case are recommended.  
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APPENDIX A – MATLAB CODE 

A. MATLAB Codes 

 
A1. MATLAB Code for DIC Filtering 

clear all; clc; close all; format long 
  
%*************************************  
cd('F:\DIC_mozahid\civill-120min\results'); 
[num txt raw]=xlsread('2000-8998circleat4001.xlsx'); 
i=2001;% starting line number 
j=2500;% Ending line number 
index = i:5:6976; 
%***************************************  
  
time= num(:,5); 
ctime=time; 
strain=100*num(:,2); 
%length(num); 
  
x=ctime(index); 
y= strain(index); 
figure  
plot(x, y, 'ko') 
ylim([0 10]) 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data=([x, y]); 
grid on 
index1 = i+1:5:j; 
x1=ctime(index1); 
y1= strain(index1); 
figure  
plot(x1, y1, 'ko') 
ylim([0 10])
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xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data1=([x1, y1]); 
grid on 
index2 = i+2:5:j; 
x2=ctime(index2); 
y2= strain(index2); 
figure  
plot(x2, y2, 'ko') 
ylim([0 10]) 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data2=([x2, y2]); 
grid on 
index3 = i+3:5:j; 
x3=ctime(index3); 
y3= strain(index3); 
figure  
plot(x3, y3, 'ko') 
ylim([0 10]) 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data3=([x3, y3]); 
grid on 
index4 = i+4:5:j; 
x4=ctime(index4); 
y4= strain(index4); 
figure  
plot(x4, y4, 'ko') 
ylim([0 10]) 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
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title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data4=([x4, y4]); 
grid on 
  
datacom=([x1, y1, x2, y2, x3, y3, x4, y4]); 
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A2. MATLAB CODE FOR B-VALUE CALCULATION 

 
clear; 
clc; 
close all 
grid on 
files = dir('*.mat'); 
if  isempty(files) 
%data_ae = load('fulldata.dat'); 
data_ae = load('fulldata80.dat'); 
save('savedvariables.mat'); 
else 
load('savedvariables.mat'); 
end 
chh = 1; 
dd_1 = data_ae(data_ae(:,5)==chh,:); 
A_1 = [dd_1(:,2),dd_1(:,7)]; 
figure(1) 
plot(A_1(:,1),A_1(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 1','FontSize',14) 
chh = 2; 
dd_2 = data_ae(data_ae(:,5)==chh,:); 
A_2 = [dd_2(:,2),dd_2(:,7)]; 
figure(2) 
plot(A_2(:,1),A_2(:,2), 'ok'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 2','FontSize',14) 
chh = 3; 
dd_3 = data_ae(data_ae(:,5)==chh,:); 
A_3 = [dd_3(:,2),dd_3(:,7)]; 
figure(3) 
plot(A_3(:,1),A_3(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 3','FontSize',14) 
chh = 4; 
dd_4 = data_ae(data_ae(:,5)==chh,:); 
A_4 = [dd_4(:,2),dd_4(:,7)]; 
figure(4) 
plot(A_4(:,1),A_4(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
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title('Amplitude distribution: CHANNEL 4','FontSize',14) 
chh = 5; 
dd_5 = data_ae(data_ae(:,5)==chh,:); 
A_5 = [dd_5(:,2),dd_5(:,7)]; 
figure(5) 
plot(A_5(:,1),A_5(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 5','FontSize',14) 
chh = 6; 
dd_6 = data_ae(data_ae(:,5)==chh,:); 
A_6 = [dd_6(:,2),dd_6(:,7)]; 
figure(6) 
plot(A_6(:,1),A_6(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 6','FontSize',14) 
chh = 7; 
dd_7 = data_ae(data_ae(:,5)==chh,:); 
A_7 = [dd_7(:,2),dd_7(:,7)]; 
figure(7) 
plot(A_7(:,1),A_7(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 7','FontSize',14) 
chh = 8; 
dd_8 = data_ae(data_ae(:,5)==chh,:); 
A_8 = [dd_8(:,2),dd_8(:,7)]; 
figure(8) 
plot(A_8(:,1),A_8(:,2),'.k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 8','FontSize',14) 
figure (9) 
plot(A_1(:,1),A_1(:,2), 'ok'); 
hold on 
plot(A_2(:,1),A_2(:,2), '.m'); 
hold on 
plot(A_3(:,1),A_3(:,2), '*y'); 
hold on 
plot(A_4(:,1),A_4(:,2), '.r'); 
hold on 
plot(A_5(:,1),A_5(:,2), '.g'); 
hold on 
plot(A_6(:,1),A_6(:,2), '.b'); 
hold on 
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plot(A_7(:,1),A_7(:,2), '.k'); 
hold on 
plot(A_8(:,1),A_8(:,2), '.g') 
legend('Channel 1','Channel 2','Channel 3','Channel 4','Channel 5','Channel 6','Channel 
7','Channel 8') 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL ALL','FontSize',14) 
figure (10) 
subplot(3,3,1); plot(A_1(:,1),A_1(:,2), '.k') 
axis([0 25000 40 100]) 
%subplot(m,n,p: m-by-n matrix of small subplots and selects the pth subplot  
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 1','FontSize',14) 
subplot(3,3,2); plot(A_2(:,1),A_2(:,2), '.k')  
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 2','FontSize',14) 
subplot(3,3,3); plot(A_3(:,1),A_3(:,2), '.k')  
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 3','FontSize',14) 
subplot(3,3,4); plot(A_4(:,1),A_4(:,2), '.k')  
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 4','FontSize',14) 
subplot(3,3,5); plot(A_5(:,1),A_5(:,2), '.k') 
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 5','FontSize',14) 
subplot(3,3,6); plot(A_6(:,1),A_6(:,2), '.k') 
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 6','FontSize',14) 
subplot(3,3,7); plot(A_7(:,1),A_7(:,2), '.k') 
axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 7','FontSize',14) 
subplot(3,3,8); plot(A_8(:,1),A_8(:,2), '.k') 
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axis([0 25000 40 100]) 
xlabel('Time(sec)','FontSize',12) 
ylabel('Amplitude, dB','FontSize',12) 
title('Amplitude distribution: CHANNEL 8','FontSize',14) 
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A3. MATLAB CODE FOR AE EVENTS DETERMINATION 

clear all; clc;close all; format long 
cd('E:\DIC_mozahid\Mozahid_CT2_April12\AE data_SM2'); 
[num txt raw]=xlsread('sm2fulldata.xlsx','sm2_aPRIL12_2012_fulldata'); 
time = num(:,2); 
ch = num(:,5); 
format long 
dt = [0; diff(time)]; 
sprintf('%.20f', dt) 
%fprintf('value of b is %1.10e\n',dt) 
event = []; 
ii=0; nx = size(num,1); 
idx = true(nx,1); 
maxnumsensor = 8; 
maxdt = 2e-5; 
while any(idx) 
ii=ii+1; 
tidx = find(idx,maxnumsensor,'first'); 
dtt = [0; diff(time(tidx))]; 
nev = find(~(dtt<=maxdt),1,'first'); 
if  isempty(nev) 
nev = length(dtt)+1; 
end 
idx2 = 1:nev-1; 
event = [event; ii*ones(length(idx2),1)]; 
tidx = tidx(idx2); 
idx(tidx)=false; 
fprintf('Looking for event %i\n',ii); 
end 
%% Organizes events and times 
numevents = max(event); 
format long 
kk=0; dt=[]; 
maxdt = 2e-5; 
for ii=1:numevents 
idx = event==ii; 
t = nan(1,8); 
tt = time(idx); 
chs = ch(idx); 
[chs indx] = sort(chs); 
tt = tt(indx); 
t(chs) = tt; 
% Time difference between ch1 and ch5 
dt15 = abs(t(1)-t(5)); 
% Time difference between ch2 and ch4 
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dt24 = abs(t(2)-t(4)); 
cond = [dt15 dt24]<maxdt; 
if  all(cond) 
kk=kk+1; 
format long 
dt(kk,:) = [ii t]; 
end 
end 
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A4. SOURCE LOCATION PLOT 

clear all; clc; close all 
cd('E:\PLB_1inchthickplate\CT_speedcal_6sensors_glue'); 
[num txt raw]=xlsread('errorcal.xlsx','time'); 
% values to change 
v=200; % Row to read from excel file 
sensid = [1 2 4 5 ]; % to change 
refs = 1; % sensor reference from sensid-1st one:1; 2nd one:2; 3rd:3  
% 
time = num(v,:); 
xysensor = [3.75    0; 0    3; 0    6; 0    9; 3.75 12; 4.783   6]; 
tt = time(sensid); 
%c = 220000; 
%c = 150000; 
%c = 110000; 
c = 9000; 
x = linspace(0,11.917,121); 
y = linspace(0,12,121); 
[X Y]=meshgrid(x,y); 
X=X(:); 
Y=Y(:); 
tr = time(sensid(refs)); 
dto = tt-tr; 
dtc = []; 
x2r = xysensor(sensid(refs),1); 
y2r = xysensor(sensid(refs),2); 
chi2 = []; 
for ii=1:length(sensid) 
xr = xysensor(sensid(ii),1); 
yr = xysensor(sensid(ii),2); 
dtc=[dtc (sqrt((X-xr).^2+(Y-yr).^2)-sqrt((X-x2r).^2+(Y-y2r).^2))/c]; 
end 
chi2=sum((dtc-repmat(dto,size(dtc,1),1)).^2,2); 
C2 = reshape(chi2,length(x),length(y)); 
figure1 = figure('Color',[1 1 1]); 
contourf(x,y,C2, 100); 
minf=10;for i=1:size(C2,1)*size(C2,2);minf=min(C2(i),minf);end 
[x1,y1,minf1]=find(C2==minf); 
text(x(y1),y(x1),'*\leftarrow PLB','FontSize',22,'Color', 'g')  
colorbar('location','eastoutside') 
xlabel('X Position(inch)','FontWeight','bold','FontSize',12,... 
'FontName','Times New Roman') 
ylabel('Y Position(inch)','FontWeight','bold','FontSize',12,... 
'FontName','Times New Roman') 
title('Error in Surce Location for Gr2:Ch1,2,4,5','FontWeight','bold','FontSize',14,... 
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'FontName','Times New Roman'); 
figure1 = figure('Color',[1 1 1]); 
surf(x,y,C2,'edgecolor','none'); 
text(x(y1),y(x1),'*\leftarrow PLB','FontSize',22,'Color', 'g')  
%surf(x,y,C2); 
colorbar('location','eastoutside') 
xlabel('X Position(inch)','FontWeight','bold','FontSize',12,... 
'FontName','Times New Roman') 
ylabel('Y Position(inch)','FontWeight','bold','FontSize',12,... 
'FontName','Times New Roman') 
title('Error in Surce Location for Gr2:Ch1,2,4,5','FontWeight','bold','FontSize',14,... 
'FontName','Times New Roman'); 
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A5. DIC PLOT 

clear all; clc;close all; 
cd('F:\DIC_mozahid\civill-60min\Results'); 
[num txt raw]=xlsread('60alldata1stpoint.xlsx'); 
for i=1:1800-1 
    t(i)=i; 
    st(i)=max(num(5*(i-1)+1:5*i,9)); 
    stm(i)=min(num(5*(i-1)+1:5*i,9)); 
  
end 
strain=st'; 
time =t'; 
figure1 = figure('Color',[1 1 1]); 
plot (t, st,'ko', t,stm,'k.') 
%ylim([4 15]) 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Strain eyy(%)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
title('Strain eyy','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
data=([time, strain]); 
grid on 
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A6. SOURCE LOCATION BASED FILTER OF AE DATA 

clear all; clc;close all; format long 
cd('F:\DIC_mozahid\Mozahid_CT2_April12'); 
[num txt raw]=xlsread('sm2_aPRIL12_2012_fulldata.xlsx'); 
%[num txt raw]=xlsread('plb25flt25.xlsx','plb25'); 
%[num txt raw]=xlsread('sm2fulldata25.xlsx','sm2_aPRIL12_fulldata'); 
time = num(:,2); 
ch = num(:,5); 
format long 
dt = [0; diff(time)]; 
sprintf('%.20f', dt) 
%fprintf('value of b is %1.10e\n',dt) 
event = []; 
ii=0; nx = size(num,1); 
idx = true(nx,1); 
maxnumsensor = 8; 
maxdt = 2e-2; 
while any(idx) 
   ii=ii+1; 
   tidx = find(idx,maxnumsensor,'first'); 
   dtt = [0; diff(time(tidx))]; 
   nev = find(~(dtt<=maxdt),1,'first'); 
   if  isempty(nev) 
       nev = length(dtt)+1; 
   end 
   idx2 = 1:nev-1; 
   event = [event; ii*ones(length(idx2),1)]; 
   tidx = tidx(idx2); 
   idx(tidx)=false; 
   fprintf('Looking for event %i\n',ii); 
end 
  
%% 
%%filter based on channel sequences(3,1,2,4,5) 
  
numevents = max(event); 
format long 
kk=0; dt=[]; 
for ii=1:numevents 
   idx = event==ii; 
   t = nan(1,8); 
   tt = time(idx); 
   chs = ch(idx); 
   [chs indx] = sort(chs); 
   tt = tt(indx); 
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   t(chs) = tt; 
   % Time difference between ch1 and ch5 
   dt31 = t(3)-t(1); 
      % Time difference between ch2 and ch4 
   dt32 = t(3)-t(2); 
   dt34 = t(3)-t(4); 
   dt35 = t(3)-t(5); 
      cond = [dt31 dt32 dt34 dt35]<0; 
   if  all(cond) 
       kk=kk+1; 
       format long 
       dt(kk,:) = [ii t]; 
       dtb(kk,:)=[t]; 
   end 
end 
X = dt(: , 2:9); 
B = X( : ); 
b= B'; 
%% 
dramin=nan(size(dt)); 
dramin(:,1)=dt(:,1); 
for j=2:9 
    for i=1:size(dt,1) 
        [row,col,v]=find(num==dt(i,j)); 
        if  size(row,1)~=0 
            dramin(i,j)=num(row(1),7); 
        else 
            dramin(i,j)=nan; 
        end 
    end 
end 
  
%plot(dt(:,3),dramin(:,3),'ko') 
%plot(dt(:,2),dramin(:,2),'ko') 
%plot(dt(:,2),dramin(:),'ko') 
  
figure1 = figure('Color',[1 1 1]); 
hold on 
for iii = 2:9 
 plot(dt(:,iii),dramin(:,iii),'ko') 
 %xydat = [dt(:,iii),dramin(:,iii)]; 
end 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Amplitude (dB)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
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title('Amplitude vs Time','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
grid on 
dtx2=dt(: , 2:9); 
dty2=dramin(: , 2:9); 
x2=dtx2(:); 
y2=dty2(:); 
xydat = [x2, y2]; 
%% Organizes events and times 
numevents = max(event); 
format long 
kk=0; dt=[]; 
%maxdt = 7.72727273e-6; 
%maxdt = 8.63636364e-6; 
%maxdt = 9.54545455e-6; 
maxdt = 20.45454545e-6; 
  
for ii=1:numevents 
   idx = event==ii; 
   t = nan(1,8); 
   tt = time(idx); 
   chs = ch(idx); 
   [chs indx] = sort(chs); 
   tt = tt(indx); 
   t(chs) = tt; 
   % Time difference between ch1 and ch5 
   %dt51 = abs(t(1)-t(5)); 
   % Time difference between ch3 and ch2 
   dt23 = abs(t(3)-t(2));   
   % Time difference between ch3 and ch4 
   dt43 = abs(t(3)-t(4));   
   % Time difference between ch2 and ch4 
   dt24 = abs(t(2)-t(4)); 
      cond = [dt23 dt43 dt24]<maxdt; 
   if  all(cond) 
       kk=kk+1; 
       format long 
       dt(kk,:) = [ii t]; 
   end 
end 
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A7. SOURCE LOCATION BASED FILTER-II CHANNEL SEQUENCE 

clear all; clc;close all; format long 
cd('F:\DIC_mozahid\Mozahid_CT2_April12'); 
%[num txt raw]=xlsread('sm2_aPRIL12_2012_fulldata.xlsx'); 
[num txt raw]=xlsread('sm2_aPRIL12_2012_fulldata_80%&swansong II.xlsx'); 
%[num txt raw]=xlsread('plb25flt25.xlsx','plb25'); 
%[num txt raw]=xlsread('sm2fulldata25.xlsx','sm2_aPRIL12_fulldata'); 
time = num(:,2); 
ch = num(:,5); 
format long 
dt = [0; diff(time)]; 
sprintf('%.20f', dt) 
%fprintf('value of b is %1.10e\n',dt) 
event = []; 
ii=0; nx = size(num,1); 
idx = true(nx,1); 
maxnumsensor = 8; 
maxdt = 2e-2; 
while any(idx) 
   ii=ii+1; 
   tidx = find(idx,maxnumsensor,'first'); 
   dtt = [0; diff(time(tidx))]; 
   nev = find(~(dtt<=maxdt),1,'first'); 
   if  isempty(nev) 
       nev = length(dtt)+1; 
   end 
   idx2 = 1:nev-1; 
   event = [event; ii*ones(length(idx2),1)]; 
   tidx = tidx(idx2); 
   idx(tidx)=false; 
   fprintf('Looking for event %i\n',ii); 
end 
  
%% 
%%filter based on channel sequences(3,1,2,4,5) 
  
numevents = max(event); 
format long 
kk=0; dt=[]; 
for ii=1:numevents 
   idx = event==ii; 
   t = nan(1,8); 
   tt = time(idx); 
   chs = ch(idx); 
   [chs indx] = sort(chs); 
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   tt = tt(indx); 
   t(chs) = tt; 
   % Time difference between ch1 and ch5 
   dt31 = t(3)-t(1); 
      % Time difference between ch2 and ch4 
   dt32 = t(3)-t(2); 
   dt34 = t(3)-t(4); 
   dt35 = t(3)-t(5); 
      cond = [dt31 dt32 dt34 dt35]<0; 
   if  all(cond) 
       kk=kk+1; 
       format long 
       dt(kk,:) = [ii t]; 
       dtb(kk,:)=[t]; 
   end 
end 
X = dt(: , 2:9); 
B = X( : ); 
b= B'; 
%% 
dramin=nan(size(dt)); 
dramin(:,1)=dt(:,1); 
for j=2:9 
    for i=1:size(dt,1) 
        [row,col,v]=find(num==dt(i,j)); 
        if  size(row,1)~=0 
            dramin(i,j)=num(row(1),7); 
        else 
            dramin(i,j)=nan; 
        end 
    end 
end 
  
%plot(dt(:,3),dramin(:,3),'ko') 
%plot(dt(:,2),dramin(:,2),'ko') 
%plot(dt(:,2),dramin(:),'ko') 
  
figure1 = figure('Color',[1 1 1]); 
hold on 
for iii = 2:9 
 plot(dt(:,iii),dramin(:,iii),'ko') 
 %xydat = [dt(:,iii),dramin(:,iii)]; 
end 
xlabel('Time(Sec)','FontWeight','bold','FontSize',12,... 
    'FontName','Times New Roman') 
ylabel('Amplitude (dB)','FontWeight','bold','FontSize',12,... 
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    'FontName','Times New Roman') 
title('Amplitude vs Time','FontWeight','bold','FontSize',14,... 
    'FontName','Times New Roman'); 
grid on 
dtx2=dt(: , 2:9); 
dty2=dramin(: , 2:9); 
x2=dtx2(:); 
y2=dty2(:); 
xydat = [x2, y2]; 
xydat(any(isnan(xydat),2),:)=[]; 
%% Organizes events and times 
numevents = max(event); 
format long 
kk=0; dt=[]; 
%maxdt = 7.72727273e-6; 
%maxdt = 8.63636364e-6; 
%maxdt = 9.54545455e-6; 
maxdt = 20.45454545e-6; 
  
for ii=1:numevents 
   idx = event==ii; 
   t = nan(1,8); 
   tt = time(idx); 
   chs = ch(idx); 
   [chs indx] = sort(chs); 
   tt = tt(indx); 
   t(chs) = tt; 
   % Time difference between ch1 and ch5 
   %dt51 = abs(t(1)-t(5)); 
   % Time difference between ch3 and ch2 
   dt23 = abs(t(3)-t(2));   
   % Time difference between ch3 and ch4 
   dt43 = abs(t(3)-t(4));   
   % Time difference between ch2 and ch4 
   dt24 = abs(t(2)-t(4)); 
      cond = [dt23 dt43 dt24]<maxdt; 
   if  all(cond) 
       kk=kk+1; 
       format long 
       dt(kk,:) = [ii t]; 
   end 
end 
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A8. FRACTURE ENERGY RELEASE CALCULATION 

close all  
clear all 
syms x 
%w =input('Inter Width(mm), w = '); 
%t =input('Inter thickness (mm), t = ');  
%Pmax =input('Inter maximum load (kN), Pmax = ');  
%Pmin =input('Inter minimum load (kN), Pmin = ');  
%Kic =input('Inter Fracture toughness (MPa-m^1/2), KiC = ');  
w = 241.3; 
t = 12.7;  
Pmax = 65;  
Pmin = 6.5;  
Kic = 128*sqrt(1000); 
delp = Pmax-Pmin; 
a = solve((sqrt(1000)*Pmax*(2+x/w)*((0.886+4.64*x/w-13.32*(x/w)^2+14.72*(x/w)^3-
5.6*(x/w)^4))/(t*w^0.5*(1-x/w)^1.5))-Kic, x); 
min=sort(a); 
a_critical= min(2); 
a_critical_from_crack_trip = a_critical-85.05; 
x = 0:1:a_critical; 
delk = delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).2̂+14.72.*(x/w).^3-
5.6.*(x/w).^4))./(t*w^0.5*(1-(x/w).^1.5)); 
N = (delk/31.6227766).^4; 
y = 100*(1-exp(-N)); 
plot(delk,y,'-ro',x,delk,'-bo') 
title('POD') 
xlabel('Stress intensity range, delta K (MPa-m^1/2)') 
ylabel('Probability of Detection(%)') 
gtext('Detectable crack length') 
  
%% 
close all  
clear all 
%w =input('Inter Width(mm), w = '); 
%t =input('Inter thickness (mm), t = ');  
%Pmax =input('Inter maximum load (kN), Pmax = ');  
%Pmin =input('Inter minimum load (kN), Pmin = ');  
%Kic =input('Inter Fracture toughness (MPa-m^1/2), KiC = ');  
w = 241.3; 
t = 12.7;  
Pmax = 65;  
Pmin = 6.5;  
Kic = 128*sqrt(1000); 
delp = Pmax-Pmin; 
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figure 
x = 0:1:150; 
delk =31.6227766*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
N = (delk/31.6227766).^2; 
y = 100*(1-exp(-N)); 
%plot(delk,y,'-ro',delk,x,'-bo') 
%plot(delk,y,'-ro') 
%plotyy(delk,x) 
[AX,H1,H2] = plotyy(delk,y,delk,x,'plot'); 
%plotyy(delk,y,delk,x,'plot') 
set(get(AX(1),'Ylabel'),'String','Probability of Detection(%)')  
set(get(AX(2),'Ylabel'),'String','Crack length,a (mm)') 
title('Probability of AE Detection') 
%xlabel('Time (\musec)')  
xlabel('Stress intensity range, delK (MPa-m^1/2)') 
set(H1,'LineStyle','*') 
set(H2,'LineStyle',':') 
%axes(h(1)) 
%ylabel('Probability of Detection(%)') 
%axes(h(2)) 
%ylabel('Crack length, mm'); hold on; 
%y2label= get(h2axes(2),'ylabel') 
gtext('Detectable crack length') 
%% 
%Final one 12/16/2011 
close all  
clear all 
syms x 
%w =input('Inter Width(mm), w = '); 
%t =input('Inter thickness (mm), t = ');  
%Pmax =input('Inter maximum load (kN), Pmax = ');  
%Pmin =input('Inter minimum load (kN), Pmin = ');  
%Kic =input('Inter Fracture toughness (MPa-m^1/2), KiC = ');  
w = 241.3; 
t = 12.7;  
Pmax = 65;  
Pmin = 6.5;  
Kic = 128; 
delp = Pmax-Pmin; 
a = solve((128-(Pmax*(2+x/w)*((0.886+4.64*x/w-13.32*(x/w)^2+14.72*(x/w)^3-
5.6*(x/w)^4)))/(t*w^0.5*(1-x/w)^1.5)), x); 
min=sort(a); 
a_critical= min(2); 
figure 
x = 83.5:1:a_critical-83.05; 
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delk =31.6227766.*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
N = (delk/100).^7; 
y = 100*(1-exp(-N)); 
%plot(delk,y,'-ro',delk,x,'-bo') 
%plot(delk,y,'-ro') 
%plotyy(delk,x) 
[AX,H1,H2] = plotyy(delk,y,delk,x,'stem','plot'); 
%plotyy(delk,y,delk,x,'plot') 
set(get(AX(1),'Ylabel'),'String','Probability of Detection(%)')  
set(get(AX(2),'Ylabel'),'String','Crack length,a (mm)') 
title('Probability of AE Detection') 
%xlabel('Time (\musec)')  
xlabel('Stress intensity range, delK (MPa-m^1/2)') 
set(H1,'LineStyle','-') 
set(H2,'LineStyle',':') 
%axes(h(1)) 
%ylabel('Probability of Detection(%)') 
%axes(h(2)) 
%ylabel('Crack length, mm'); hold on; 
%y2label= get(h2axes(2),'ylabel') 
%gtext('Detectable crack length') 
%% 
%Final one 01/04/2012 
close all  
clear all 
%w =input('Inter Width(mm), w = '); 
%t =input('Inter thickness (mm), t = ');  
%Pmax =input('Inter maximum load (kN), Pmax = ');  
%Pmin =input('Inter minimum load (kN), Pmin = ');  
%Kic =input('Inter Fracture toughness (MPa-m^1/2), KiC = ');  
w = 241.3; 
t = 12.7;  
Pmax = 65;  
Pmin = 6.5;  
Kic = 128; 
E = 200000; 
delp = Pmax-Pmin; 
figure 
x = 82.55:1:145; 
delk =31.6227766.*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
N = (delk/100).^7; 
y = 100*(1-exp(-N)); 
[AX,H1,H2] = plotyy(delk,y,delk,x,'stem','plot'); 
set(get(AX(1),'Ylabel'),'String','Probability of Detection(%)')  
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set(get(AX(2),'Ylabel'),'String','Crack length,a (mm)') 
title('Probability of AE Detection') 
xlabel('Stress intensity range, delK (MPa-m^1/2)') 
set(H1,'LineStyle','-') 
set(H2,'LineStyle',':') 
figure 
x = 82.55:0.01:145; 
delk =31.6227766.*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
da =(1.93)*10^-9*(delk).^3.2989;  
delJ = delk.^2/E*t.*da; 
plot(x,delJ); 
ylabel('Energy release rate, delJ(J/cycle)')% aJ: attojoule = 10^-18 joule 
xlabel('Crack length, a(mm)')  
figure 
x = 82.55:0.01:145; 
delk =31.6227766.*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
da =(1.93)*10^-9*(delk).^3.2989;  
delJ = delk.^2/E*t.*da; 
plot(delk,delJ); 
ylabel('Energy release rate, delJ(J/cycle)')% aJ: attojoule = 10^-18 joule 
xlabel('Stress intensity range, delK (MPa-m^1/2)')  
figure 
x = 82.55:0.01:145; 
delk =31.6227766.*delp.*(2+x/w).*((0.886+4.64.*x/w-13.32.*(x/w).^2+14.72.*(x/w).^3-
5.6.*(x/w).^4))./((t*w^0.5*(1-x/w).^1.5)); 
da =(1.93)*10^-9.*(delk).^3.2989;  
plot(da,delk); 
ylabel('Stress intensity range, delK (MPa-m^1/2)') 
xlabel('Crack growth rate, da/dN(mm/cycle)') 
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A9. B-VALUE CALCULATION 

clear; 
clc; 
close all 
cd('C:\Users\Saima\Dropbox\Mathlab code'); 
%Load AE data from ASCII TEXT 
% Eraase Header from text file and save with extension .dat (all files 
% option must be selected at this point) 
%Input file name below 
%load the AE data from ASCII file 
files = dir('*.mat'); 
if  isempty(files) 
    data_ae = load('fulldata.dat'); 
    %data_ae = load('fulldata80.dat'); 
        save('savedvariables.mat'); 
else 
    load('savedvariables.mat'); 
end 
  
%% 
% This is the calaculation of the B value (Now all Channels) 
run = 100; 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Organization in groups 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
dd = data_ae; 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
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           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
ampl47 = size(dd((dd(dd(:,4)>=45 & dd(:,4)<=49)),:)); 
ampl_47=ampl47(1,1); 
ampl52 = size(dd((dd(dd(:,4)>=50 & dd(:,4)<=54)),:)); 
ampl_52=ampl52(1,1); 
ampl57 = size(dd((dd(dd(:,4)>=55 & dd(:,4)<=59)),:)); 
ampl_57=ampl57(1,1); 
ampl62 = size(dd((dd(dd(:,4)>=60 & dd(:,4)<=64)),:)); 
ampl_62=ampl62(1,1); 
ampl67 = size(dd((dd(dd(:,4)>=65 & dd(:,4)<=69)),:)); 
ampl_67=ampl67(1,1); 
ampl72 = size(dd((dd(dd(:,4)>=70 & dd(:,4)<=74)),:)); 
ampl_72=ampl72(1,1); 
ampl77 = size(dd((dd(dd(:,4)>=75 & dd(:,4)<=79)),:)); 
ampl_77=ampl77(1,1); 
ampl82 = size(dd((dd(dd(:,4)>=80 & dd(:,4)<=84)),:)); 
ampl_82=ampl82(1,1); 
ampl87 = size(dd((dd(dd(:,4)>=85 & dd(:,4)<=89)),:)); 
ampl_87=ampl87(1,1); 
ampl92 = size(dd((dd(dd(:,4)>=90 & dd(:,4)<=94)),:)); 
ampl_92=ampl92(1,1); 
ampl97 = size(dd((dd(dd(:,4)>=95 & dd(:,4)<100)),:)); 
ampl_97=ampl97(1,1); 
s=[ampl_47,ampl_52,ampl_57,ampl_62,ampl_67,ampl_72,ampl_77,ampl_82,ampl_87,a
mpl_92,ampl_97]; 
n=[47,52,57,62,67,72,77,82,87,92,97]; 
amp=data_ae(:,4); 
  
figure(1) 
plot(tmark,b_value,'k') 
xlabel('Time(sec)','FontSize',12) 
ylabel('b-value','FontSize',12) 
title('Trend of b-value CHANNEL All','FontSize',14)  
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figure(2) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/10000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude range(dB)','FontSize',12) 
ylabel('Frequency, N','FontSize',12) 
title('Frequency vs Amplitude CHANNEL All','FontSize',14) 
  
%% b-value for individual channel 
chh = 8; 
dd = data_ae(data_ae(:,3)==chh,:); 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
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        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
ampl47 = size(dd((dd(dd(:,4)>=45 & dd(:,4)<=49)),:)); 
ampl_47=ampl47(1,1); 
ampl52 = size(dd((dd(dd(:,4)>=50 & dd(:,4)<=54)),:)); 
ampl_52=ampl52(1,1); 
ampl57 = size(dd((dd(dd(:,4)>=55 & dd(:,4)<=59)),:)); 
ampl_57=ampl57(1,1); 
ampl62 = size(dd((dd(dd(:,4)>=60 & dd(:,4)<=64)),:)); 
ampl_62=ampl62(1,1); 
ampl67 = size(dd((dd(dd(:,4)>=65 & dd(:,4)<=69)),:)); 
ampl_67=ampl67(1,1); 
ampl72 = size(dd((dd(dd(:,4)>=70 & dd(:,4)<=74)),:)); 
ampl_72=ampl72(1,1); 
ampl77 = size(dd((dd(dd(:,4)>=75 & dd(:,4)<=79)),:)); 
ampl_77=ampl77(1,1); 
ampl82 = size(dd((dd(dd(:,4)>=80 & dd(:,4)<=84)),:)); 
ampl_82=ampl82(1,1); 
ampl87 = size(dd((dd(dd(:,4)>=85 & dd(:,4)<=89)),:)); 
ampl_87=ampl87(1,1); 
ampl92 = size(dd((dd(dd(:,4)>=90 & dd(:,4)<=94)),:)); 
ampl_92=ampl92(1,1); 
ampl97 = size(dd((dd(dd(:,4)>=95 & dd(:,4)<100)),:)); 
ampl_97=ampl97(1,1); 
s=[ampl_47,ampl_52,ampl_57,ampl_62,ampl_67,ampl_72,ampl_77,ampl_82,ampl_87,a
mpl_92,ampl_97]; 
n=[47,52,57,62,67,72,77,82,87,92,97]; 
amp=data_ae(:,4); 
  
figure(3) 
plot(tmark,b_value, 'k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('b-value','FontSize',12) 
title('Trend of b-value CHANNEL 8','FontSize',14)  
figure(4) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
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hold on 
nn = [n(1):(n(end)-n(1))/1000000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude range(dB)','FontSize',12) 
ylabel('Frequency, N','FontSize',12) 
title('Frequency vs Amplitude CHANNEL 8','FontSize',14) 
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A10. B_VALUE_AMPLITUDE RANGE  

%b_value_amplitude range.m 

clear; 
clc; 
close all 
cd('C:\Users\Saima\Dropbox\Mathlab code'); 
%Load AE data from ASCII TEXT 
% Eraase Header from text file and save with extension .dat (all files 
% option must be selected at this point) 
%Input file name below 
%load the AE data from ASCII file 
files = dir('*.mat'); 
if  isempty(files) 
    data_ae = load('fulldata.dat'); 
    %data_ae = load('fulldata80.dat'); 
        save('savedvariables.mat'); 
else 
    load('savedvariables.mat'); 
end 
  
%% 
% This is the calaculation of the B value (Now all Channels) 
run = 100; 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Organization in groups 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
dd = data_ae; 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
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           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
ampl47 = size(dd((dd(dd(:,4)>=45 & dd(:,4)<=49)),:)); 
ampl_47=ampl47(1,1); 
ampl52 = size(dd((dd(dd(:,4)>=50 & dd(:,4)<=54)),:)); 
ampl_52=ampl52(1,1); 
ampl57 = size(dd((dd(dd(:,4)>=55 & dd(:,4)<=59)),:)); 
ampl_57=ampl57(1,1); 
ampl62 = size(dd((dd(dd(:,4)>=60 & dd(:,4)<=64)),:)); 
ampl_62=ampl62(1,1); 
ampl67 = size(dd((dd(dd(:,4)>=65 & dd(:,4)<=69)),:)); 
ampl_67=ampl67(1,1); 
ampl72 = size(dd((dd(dd(:,4)>=70 & dd(:,4)<=74)),:)); 
ampl_72=ampl72(1,1); 
ampl77 = size(dd((dd(dd(:,4)>=75 & dd(:,4)<=79)),:)); 
ampl_77=ampl77(1,1); 
ampl82 = size(dd((dd(dd(:,4)>=80 & dd(:,4)<=84)),:)); 
ampl_82=ampl82(1,1); 
ampl87 = size(dd((dd(dd(:,4)>=85 & dd(:,4)<=89)),:)); 
ampl_87=ampl87(1,1); 
ampl92 = size(dd((dd(dd(:,4)>=90 & dd(:,4)<=94)),:)); 
ampl_92=ampl92(1,1); 
ampl97 = size(dd((dd(dd(:,4)>=95 & dd(:,4)<100)),:)); 
ampl_97=ampl97(1,1); 
s=[ampl_47,ampl_52,ampl_57,ampl_62,ampl_67,ampl_72,ampl_77,ampl_82,ampl_87,a
mpl_92,ampl_97]; 
n=[47,52,57,62,67,72,77,82,87,92,97]; 
amp=data_ae(:,4); 
  
figure(1) 
plot(tmark,b_value,'k') 
xlabel('Time(sec)','FontSize',12) 
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ylabel('b-value','FontSize',12) 
title('Trend of b-value CHANNEL All','FontSize',14)  
  
figure(2) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/10000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude range(dB)','FontSize',12) 
ylabel('Frequency, N','FontSize',12) 
title('Frequency vs Amplitude CHANNEL All','FontSize',14) 
  
%% b-value for individual channel 
chh = 8; 
dd = data_ae(data_ae(:,3)==chh,:); 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
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    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
ampl47 = size(dd((dd(dd(:,4)>=45 & dd(:,4)<=49)),:)); 
ampl_47=ampl47(1,1); 
ampl52 = size(dd((dd(dd(:,4)>=50 & dd(:,4)<=54)),:)); 
ampl_52=ampl52(1,1); 
ampl57 = size(dd((dd(dd(:,4)>=55 & dd(:,4)<=59)),:)); 
ampl_57=ampl57(1,1); 
ampl62 = size(dd((dd(dd(:,4)>=60 & dd(:,4)<=64)),:)); 
ampl_62=ampl62(1,1); 
ampl67 = size(dd((dd(dd(:,4)>=65 & dd(:,4)<=69)),:)); 
ampl_67=ampl67(1,1); 
ampl72 = size(dd((dd(dd(:,4)>=70 & dd(:,4)<=74)),:)); 
ampl_72=ampl72(1,1); 
ampl77 = size(dd((dd(dd(:,4)>=75 & dd(:,4)<=79)),:)); 
ampl_77=ampl77(1,1); 
ampl82 = size(dd((dd(dd(:,4)>=80 & dd(:,4)<=84)),:)); 
ampl_82=ampl82(1,1); 
ampl87 = size(dd((dd(dd(:,4)>=85 & dd(:,4)<=89)),:)); 
ampl_87=ampl87(1,1); 
ampl92 = size(dd((dd(dd(:,4)>=90 & dd(:,4)<=94)),:)); 
ampl_92=ampl92(1,1); 
ampl97 = size(dd((dd(dd(:,4)>=95 & dd(:,4)<100)),:)); 
ampl_97=ampl97(1,1); 
s=[ampl_47,ampl_52,ampl_57,ampl_62,ampl_67,ampl_72,ampl_77,ampl_82,ampl_87,a
mpl_92,ampl_97]; 
n=[47,52,57,62,67,72,77,82,87,92,97]; 
amp=data_ae(:,4); 
  
figure(3) 
plot(tmark,b_value, 'k'); 
xlabel('Time(sec)','FontSize',12); 
ylabel('b-value','FontSize',12) 
title('Trend of b-value CHANNEL 8','FontSize',14)  
figure(4) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
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A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/1000000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude range(dB)','FontSize',12) 
ylabel('Frequency, N','FontSize',12) 
title('Frequency vs Amplitude CHANNEL 8','FontSize',14) 
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A11. B-VALUE ANALYSIS 

%b_value_analysis.m 
clear; 
clc; 
close all 
%Load AE data from ASCII TEXT 
% Eraase Header from text file and save with extension .dat (all files 
% option must be selected at this point) 
%Input file name below 
%load the AE data from ASCII file 
files = dir('*.mat'); 
if  isempty(files) 
    %data_ae = load('fulldata.dat'); 
    data_ae = load('fulldata80.dat'); 
        save('savedvariables.mat'); 
else 
    load('savedvariables.mat'); 
end 
  
%% 
% This is the calaculation of the B value (Now all Channels) 
run = 10000000000000000000; 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Organization in groups 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
dd = data_ae; 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
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           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
amp45 = size(data_ae((data_ae(data_ae(:,4)>=45 & data_ae(:,4)<=45.5)),:)); 
amp_45=amp45(1,1); 
amp46 = size(data_ae((data_ae(data_ae(:,4)>=45.5 & data_ae(:,4)<=46.5)),:)); 
amp_46=amp46(1,1); 
amp47 = size(data_ae((data_ae(data_ae(:,4)>=46.5 & data_ae(:,4)<=47.5)),:)); 
amp_47=amp47(1,1); 
amp48 = size(data_ae((data_ae(data_ae(:,4)>=47.5 & data_ae(:,4)<48.5)),:)); 
amp_48=amp48(1,1); 
amp49 = size(data_ae((data_ae(data_ae(:,4)>=48.5 & data_ae(:,4)<49.5)),:)); 
amp_49=amp49(1,1); 
amp50 = size(data_ae((data_ae(data_ae(:,4)>=49.5 & data_ae(:,4)<50.5)),:)); 
amp_50=amp50(1,1); 
amp51 = size(data_ae((data_ae(data_ae(:,4)>=50.5 & data_ae(:,4)<51.5)),:)); 
amp_51=amp51(1,1); 
amp52 = size(data_ae((data_ae(data_ae(:,4)>=51.5 & data_ae(:,4)<52.5)),:)); 
amp_52=amp52(1,1); 
amp53 = size(data_ae((data_ae(data_ae(:,4)>=52.5 & data_ae(:,4)<53.5)),:)); 
amp_53=amp53(1,1); 
amp54 = size(data_ae((data_ae(data_ae(:,4)>=53.5 & data_ae(:,4)<54.5)),:)); 
amp_54=amp54(1,1); 
amp55 = size(data_ae((data_ae(data_ae(:,4)>=54.5 & data_ae(:,4)<55.5)),:)); 
amp_55=amp55(1,1); 
amp56 = size(data_ae((data_ae(data_ae(:,4)>=55.5 & data_ae(:,4)<56.5)),:)); 
amp_56=amp56(1,1); 
amp57 = size(data_ae((data_ae(data_ae(:,4)>=56.5 & data_ae(:,4)<57.5)),:)); 
amp_57=amp57(1,1); 
amp58 = size(data_ae((data_ae(data_ae(:,4)>=57.5 & data_ae(:,4)<58.5)),:)); 
amp_58=amp58(1,1); 
amp59 = size(data_ae((data_ae(data_ae(:,4)>=58.5 & data_ae(:,4)<59.5)),:)); 
amp_59=amp59(1,1); 
amp60 = size(data_ae((data_ae(data_ae(:,4)>=59.5 & data_ae(:,4)<60.5)),:)); 
amp_60=amp60(1,1); 



www.manaraa.com

 

184 
 

amp61 = size(data_ae((data_ae(data_ae(:,4)>=60.5 & data_ae(:,4)<61.5)),:)); 
amp_61=amp61(1,1); 
amp62 = size(data_ae((data_ae(data_ae(:,4)>=61.5 & data_ae(:,4)<62.5)),:)); 
amp_62=amp62(1,1); 
amp63 = size(data_ae((data_ae(data_ae(:,4)>=62.5 & data_ae(:,4)<63.5)),:)); 
amp_63=amp63(1,1); 
amp64 = size(data_ae((data_ae(data_ae(:,4)>=63.5 & data_ae(:,4)<64.5)),:)); 
amp_64=amp64(1,1); 
amp65 = size(data_ae((data_ae(data_ae(:,4)>=64.5 & data_ae(:,4)<65.5)),:)); 
amp_65=amp65(1,1); 
amp66 = size(data_ae((data_ae(data_ae(:,4)>=65.5 & data_ae(:,4)<66.5)),:)); 
amp_66=amp66(1,1); 
amp67 = size(data_ae((data_ae(data_ae(:,4)>=66.5 & data_ae(:,4)<67.5)),:)); 
amp_67=amp67(1,1); 
amp68 = size(data_ae((data_ae(data_ae(:,4)>=67.5 & data_ae(:,4)<68.5)),:)); 
amp_68=amp68(1,1); 
amp69 = size(data_ae((data_ae(data_ae(:,4)>=68.5 & data_ae(:,4)<69.5)),:)); 
amp_69=amp69(1,1); 
amp70 = size(data_ae((data_ae(data_ae(:,4)>=69.5 & data_ae(:,4)<70.5)),:)); 
amp_70=amp70(1,1); 
amp71 = size(data_ae((data_ae(data_ae(:,4)>=70.5 & data_ae(:,4)<71.5)),:)); 
amp_71=amp71(1,1); 
amp72 = size(data_ae((data_ae(data_ae(:,4)>=71.5 & data_ae(:,4)<72.5)),:)); 
amp_72=amp72(1,1); 
amp73 = size(data_ae((data_ae(data_ae(:,4)>=72.5 & data_ae(:,4)<73.5)),:)); 
amp_73=amp73(1,1); 
amp74 = size(data_ae((data_ae(data_ae(:,4)>=73.5 & data_ae(:,4)<74.5)),:)); 
amp_74=amp74(1,1); 
amp75 = size(data_ae((data_ae(data_ae(:,4)>=74.5 & data_ae(:,4)<75.5)),:)); 
amp_75=amp75(1,1); 
amp76 = size(data_ae((data_ae(data_ae(:,4)>=75.5 & data_ae(:,4)<76.5)),:)); 
amp_76=amp76(1,1); 
amp77 = size(data_ae((data_ae(data_ae(:,4)>=76.5 & data_ae(:,4)<77.5)),:)); 
amp_77=amp77(1,1); 
amp78 = size(data_ae((data_ae(data_ae(:,4)>=77.5 & data_ae(:,4)<78.5)),:)); 
amp_78=amp78(1,1); 
amp79 = size(data_ae((data_ae(data_ae(:,4)>=78.5 & data_ae(:,4)<79.5)),:)); 
amp_79=amp79(1,1); 
amp80 = size(data_ae((data_ae(data_ae(:,4)>=79.5 & data_ae(:,4)<80.5)),:)); 
amp_80=amp80(1,1); 
amp81 = size(data_ae((data_ae(data_ae(:,4)>=80.5 & data_ae(:,4)<81.5)),:)); 
amp_81=amp81(1,1); 
amp82 = size(data_ae((data_ae(data_ae(:,4)>=81.5 & data_ae(:,4)<82.5)),:)); 
amp_82=amp82(1,1); 
amp83 = size(data_ae((data_ae(data_ae(:,4)>=82.5 & data_ae(:,4)<83.5)),:)); 
amp_83=amp83(1,1); 
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amp84 = size(data_ae((data_ae(data_ae(:,4)>=83.5 & data_ae(:,3)<84.5)),:)); 
amp_84=amp84(1,1); 
amp85 = size(data_ae((data_ae(data_ae(:,4)>=84.5 & data_ae(:,4)<85.5)),:)); 
amp_85=amp85(1,1); 
amp86 = size(data_ae((data_ae(data_ae(:,4)>=85.5 & data_ae(:,4)<86.5)),:)); 
amp_86=amp86(1,1); 
amp87 = size(data_ae((data_ae(data_ae(:,4)>=86.5 & data_ae(:,4)<87.5)),:)); 
amp_87=amp87(1,1); 
amp88 = size(data_ae((data_ae(data_ae(:,4)>=87.5 & data_ae(:,4)<88.5)),:)); 
amp_88=amp88(1,1); 
amp89 = size(data_ae((data_ae(data_ae(:,4)>=88.5 & data_ae(:,4)<89.5)),:)); 
amp_89=amp89(1,1); 
amp90 = size(data_ae((data_ae(data_ae(:,4)>=89.5 & data_ae(:,4)<90.5)),:)); 
amp_90=amp90(1,1); 
amp91 = size(data_ae((data_ae(data_ae(:,4)>=90.5 & data_ae(:,4)<91.5)),:)); 
amp_91=amp91(1,1); 
amp92 = size(data_ae((data_ae(data_ae(:,4)>=91.5 & data_ae(:,4)<92.5)),:)); 
amp_92=amp92(1,1); 
amp93 = size(data_ae((data_ae(data_ae(:,4)>=92.5 & data_ae(:,4)<93.5)),:)); 
amp_93=amp93(1,1); 
amp94 = size(data_ae((data_ae(data_ae(:,4)>=93.5 & data_ae(:,4)<94.5)),:)); 
amp_94=amp94(1,1); 
amp95 = size(data_ae((data_ae(data_ae(:,4)>=94.5 & data_ae(:,4)<95.5)),:)); 
amp_95=amp95(1,1); 
amp96 = size(data_ae((data_ae(data_ae(:,4)>=95.5 & data_ae(:,4)<96.5)),:)); 
amp_96=amp96(1,1); 
amp97 = size(data_ae((data_ae(data_ae(:,4)>=96.5 & data_ae(:,4)<97.5)),:)); 
amp_97=amp97(1,1); 
amp98 = size(data_ae((data_ae(data_ae(:,4)>=97.5 & data_ae(:,4)<98.5)),:)); 
amp_98=amp98(1,1); 
amp99 = size(data_ae((data_ae(data_ae(:,4)>=98.5 & data_ae(:,4)<99.5)),:)); 
amp_99=amp99(1,1); 
amp100 = size(data_ae((data_ae(data_ae(:,4)>=99.5 & data_ae(:,4)<=100)),:)); 
amp_100=amp100(1,1); 
s=[amp_45,amp_46,amp_47,amp_48,amp_49,amp_50,amp_51,amp_52,amp_53,amp_54
,amp_55,amp_56,amp_57,amp_58,amp_59,amp_60,amp_61,amp_62,amp_63,amp_64,a
mp_65,amp_66,amp_67,amp_68,amp_69,amp_70,amp_71,amp_72,amp_73,amp_74,amp
_75,amp_76,amp_77,amp_78,amp_79,amp_80,amp_81,amp_82,amp_83,amp_84,amp_8
5,amp_86,amp_87,amp_88,amp_89,amp_90,amp_91,amp_92,amp_93,amp_94,amp_95,a
mp_96,amp_97,amp_98,amp_99,amp_100]; 
n=[45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,7
2,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
]; 
amp=data_ae(:,4); 
  
figure(1) 
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plot(tmark,b_value,'k') 
xlabel('Time(sec)') 
ylabel('B-Value') 
title('B-Value vs. Time')  
  
figure(2) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/10000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental Data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude(dB)') 
ylabel('Frequency, N') 
  
%% b-value for individual channel 
chh = 7; 
dd = data_ae(data_ae(:,3)==chh,:); 
A = [dd(:,2),dd(:,4)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
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    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
ampl45 = size(dd((dd(dd(:,4)>=45 & dd(:,4)<=45.5)),:)); 
ampl_45=ampl45(1,1); 
ampl46 = size(dd((dd(dd(:,4)>=45.5 & dd(:,4)<=46.5)),:)); 
ampl_46=ampl46(1,1); 
ampl47 = size(dd((dd(dd(:,4)>=46.5 & dd(:,4)<=47.5)),:)); 
ampl_47=ampl47(1,1); 
ampl48 = size(dd((dd(dd(:,4)>=47.5 & dd(:,4)<48.5)),:)); 
ampl_48=ampl48(1,1); 
ampl49 = size(dd((dd(dd(:,4)>=48.5 & dd(:,4)<49.5)),:)); 
ampl_49=ampl49(1,1); 
ampl50 = size(dd((dd(dd(:,4)>=49.5 & dd(:,4)<50.5)),:)); 
ampl_50=ampl50(1,1); 
ampl51 = size(dd((dd(dd(:,4)>=50.5 & dd(:,4)<51.5)),:)); 
ampl_51=ampl51(1,1); 
ampl52 = size(dd((dd(dd(:,4)>=51.5 & dd(:,4)<52.5)),:)); 
ampl_52=ampl52(1,1); 
ampl53 = size(dd((dd(dd(:,4)>=52.5 & dd(:,4)<53.5)),:)); 
ampl_53=ampl53(1,1); 
ampl54 = size(dd((dd(dd(:,4)>=53.5 & dd(:,4)<54.5)),:)); 
ampl_54=ampl54(1,1); 
ampl55 = size(dd((dd(dd(:,4)>=54.5 & dd(:,4)<55.5)),:)); 
ampl_55=ampl55(1,1); 
ampl56 = size(dd((dd(dd(:,4)>=55.5 & dd(:,4)<56.5)),:)); 
ampl_56=ampl56(1,1); 
ampl57 = size(dd((dd(dd(:,4)>=56.5 & dd(:,4)<57.5)),:)); 
ampl_57=ampl57(1,1); 
ampl58 = size(dd((dd(dd(:,4)>=57.5 & dd(:,4)<58.5)),:)); 
ampl_58=ampl58(1,1); 
ampl59 = size(dd((dd(dd(:,4)>=58.5 & dd(:,4)<59.5)),:)); 
ampl_59=ampl59(1,1); 
ampl60 = size(dd((dd(dd(:,4)>=59.5 & dd(:,4)<60.5)),:)); 
ampl_60=ampl60(1,1); 
ampl61 = size(dd((dd(dd(:,4)>=60.5 & dd(:,4)<61.5)),:)); 
ampl_61=ampl61(1,1); 
ampl62 = size(dd((dd(dd(:,4)>=61.5 & dd(:,4)<62.5)),:)); 
ampl_62=ampl62(1,1); 
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ampl63 = size(dd((dd(dd(:,4)>=62.5 & dd(:,4)<63.5)),:)); 
ampl_63=ampl63(1,1); 
ampl64 = size(dd((dd(dd(:,4)>=63.5 & dd(:,4)<64.5)),:)); 
ampl_64=ampl64(1,1); 
ampl65 = size(data_ae((dd(dd(:,4)>=64.5 & dd(:,4)<65.5)),:)); 
ampl_65=ampl65(1,1); 
ampl66 = size(dd((dd(dd(:,4)>=65.5 & dd(:,4)<66.5)),:)); 
ampl_66=ampl66(1,1); 
ampl67 = size(dd((dd(dd(:,4)>=66.5 & dd(:,4)<67.5)),:)); 
ampl_67=ampl67(1,1); 
ampl68 = size(dd((dd(dd(:,4)>=67.5 & dd(:,4)<68.5)),:)); 
ampl_68=ampl68(1,1); 
ampl69 = size(dd((dd(dd(:,4)>=68.5 & dd(:,4)<69.5)),:)); 
ampl_69=ampl69(1,1); 
ampl70 = size(dd((dd(dd(:,4)>=69.5 & dd(:,4)<70.5)),:)); 
ampl_70=ampl70(1,1); 
ampl71 = size(dd((dd(dd(:,4)>=70.5 & dd(:,4)<71.5)),:)); 
ampl_71=ampl71(1,1); 
ampl72 = size(dd((dd(dd(:,4)>=71.5 & dd(:,4)<72.5)),:)); 
ampl_72=ampl72(1,1); 
ampl73 = size(dd((dd(dd(:,4)>=72.5 & dd(:,4)<73.5)),:)); 
ampl_73=ampl73(1,1); 
ampl74 = size(dd((dd(dd(:,4)>=73.5 & dd(:,4)<74.5)),:)); 
ampl_74=ampl74(1,1); 
ampl75 = size(dd((dd(dd(:,4)>=74.5 & dd(:,4)<75.5)),:)); 
ampl_75=ampl75(1,1); 
ampl76 = size(dd((dd(dd(:,4)>=75.5 & dd(:,4)<76.5)),:)); 
ampl_76=ampl76(1,1); 
ampl77 = size(dd((dd(dd(:,4)>=76.5 & dd(:,4)<77.5)),:)); 
ampl_77=ampl77(1,1); 
ampl78 = size(dd((dd(dd(:,4)>=77.5 & dd(:,4)<78.5)),:)); 
ampl_78=ampl78(1,1); 
ampl79 = size(dd((dd(dd(:,4)>=78.5 & dd(:,4)<79.5)),:)); 
ampl_79=ampl79(1,1); 
ampl80 = size(dd((dd(dd(:,4)>=79.5 & dd(:,4)<80.5)),:)); 
ampl_80=ampl80(1,1); 
ampl81 = size(dd((dd(dd(:,4)>=80.5 & dd(:,4)<81.5)),:)); 
ampl_81=ampl81(1,1); 
ampl82 = size(dd((dd(dd(:,4)>=81.5 & dd(:,4)<82.5)),:)); 
ampl_82=ampl82(1,1); 
ampl83 = size(dd((dd(dd(:,4)>=82.5 & dd(:,4)<83.5)),:)); 
ampl_83=ampl83(1,1); 
ampl84 = size(dd((dd(dd(:,4)>=83.5 & dd(:,3)<84.5)),:)); 
ampl_84=ampl84(1,1); 
ampl85 = size(dd((dd(dd(:,4)>=84.5 & dd(:,4)<85.5)),:)); 
ampl_85=ampl85(1,1); 
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ampl86 = size(dd((dd(dd(:,4)>=85.5 & dd(:,4)<86.5)),:)); 
ampl_86=ampl86(1,1); 
ampl87 = size(dd((dd(dd(:,4)>=86.5 & dd(:,4)<87.5)),:)); 
ampl_87=ampl87(1,1); 
ampl88 = size(dd((dd(dd(:,4)>=87.5 & dd(:,4)<88.5)),:)); 
ampl_88=ampl88(1,1); 
ampl89 = size(dd((dd(dd(:,4)>=88.5 & dd(:,4)<89.5)),:)); 
ampl_89=ampl89(1,1); 
ampl90 = size(dd((dd(dd(:,4)>=89.5 & dd(:,4)<90.5)),:)); 
ampl_90=ampl90(1,1); 
ampl91 = size(dd((dd(dd(:,4)>=90.5 & dd(:,4)<91.5)),:)); 
ampl_91=ampl91(1,1); 
ampl92 = size(dd((dd(dd(:,4)>=91.5 & dd(:,4)<92.5)),:)); 
ampl_92=ampl92(1,1); 
ampl93 = size(dd((dd(dd(:,4)>=92.5 & dd(:,4)<93.5)),:)); 
ampl_93=ampl93(1,1); 
ampl94 = size(dd((dd(dd(:,4)>=93.5 & dd(:,4)<94.5)),:)); 
ampl_94=ampl94(1,1); 
ampl95 = size(dd((dd(dd(:,4)>=94.5 & dd(:,4)<95.5)),:)); 
ampl_95=ampl95(1,1); 
ampl96 = size(dd((dd(dd(:,4)>=95.5 & dd(:,4)<96.5)),:)); 
ampl_96=ampl96(1,1); 
ampl97 = size(dd((dd(dd(:,4)>=96.5 & dd(:,4)<97.5)),:)); 
ampl_97=ampl97(1,1); 
ampl98 = size(dd((dd(dd(:,4)>=97.5 & dd(:,4)<98.5)),:)); 
ampl_98=ampl98(1,1); 
ampl99 = size(dd((dd(dd(:,4)>=98.5 & dd(:,4)<99.5)),:)); 
ampl_99=ampl99(1,1); 
ampl100 = size(dd((dd(dd(:,4)>=99.5 & dd(:,4)<=100)),:)); 
ampl_100=ampl100(1,1); 
s=[ampl_45,ampl_46,ampl_47,ampl_48,ampl_49,ampl_50,ampl_51,ampl_52,ampl_53,a
mpl_54,ampl_55,ampl_56,ampl_57,ampl_58,ampl_59,ampl_60,ampl_61,ampl_62,ampl_
63,ampl_64,ampl_65,ampl_66,ampl_67,ampl_68,ampl_69,ampl_70,ampl_71,ampl_72,a
mpl_73,ampl_74,ampl_75,ampl_76,ampl_77,ampl_78,ampl_79,ampl_80,ampl_81,ampl_
82,ampl_83,ampl_84,ampl_85,ampl_86,ampl_87,ampl_88,ampl_89,ampl_90,ampl_91,a
mpl_92,ampl_93,ampl_94,ampl_95,ampl_96,ampl_97,ampl_98,ampl_99,ampl_100]; 
n=[45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,7
2,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
]; 
amp=data_ae(:,4); 
  
figure(3) 
plot(tmark,b_value, 'k'); 
xlabel('Time'); 
ylabel('b-value') 
title('b-Value vs. Time')  
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figure(4) 
semilogy(n,s,'k.') 
n(s==0) = []; 
s(s==0) = []; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/10000:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
legend('Experimental Data',sprintf('Best fit- b: %0.10g',X(2))); 
xlabel('Amplitude range(dB)') 
ylabel('Frequency, N') 
title('Frequency vs Time: Channel') 
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A12. B-VALUE ANALSYS 

%b-value analysis.m 
clear; 
clc; 
close all 
%Load AE data from ASCII TEXT 
% Eraase Header from text file and save with extension .dat (all files 
% option must be selected at this point) 
%Input file name below 
  
%load the AE data from ASCII file 
files = dir('*.mat'); 
if  isempty(files) 
    data_ae = load('fulldata.dat'); 
    %data_ae = load('fulldata80.dat'); 
        save('savedvariables.mat'); 
else 
    load('savedvariables.mat'); 
end 
  
%Data_ae columns coorsepond to the following data as the program is written 
%now 
  
%  1      2     3    4     5     6      7        8    9     10    11   
% ID, Time(s), CH, RISE, COUN, ENER, DURATION, AMP, A-FRQ, RMS, PCNTS,  
  
%   12           13        14     15  
%SIG STRNGTH, ABS-ENERGY, C-FRQ, P-FRQ 
    
%% 
% This is the calaculation of the B value (Now all Channels) 
run = 10000000000000000000; 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Organization in groups 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
dd = data_ae; 
A = [dd(:,2),dd(:,3)]; 
nev = 100; %number of events in each set (must be less than half the total number of data 
points) 
tam = size(A); %A: matrix containing amplitude and time data in columns [time, amp] 
tam2 = tam(1);  
int = tam2/nev; int2 = floor(int); %number of data packages 
dint = int2 - int; 
ind = 1:1:nev; 
N=zeros(nev,1); Asp = N; 
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N_A = zeros(tam); 
tmark=zeros(int2,1); 
packages{1,int2}=[]; 
b_value=zeros(int2,1); 
for i=1:int2 
    As=A(ind,:); 
    As=sort(As); 
       for j=1:nev 
           Asj=As(j,2); 
           dat=find(As(:,2)>=Asj); 
           N(j) = length(dat); Asp(j)=Asj; 
       end 
    N_A(ind,:)=[N,Asp]; 
    packages{i}=[log10(N),Asp]; 
    tmark(i)=max(A(ind,1)); 
    ind(:)=ind(:)+nev; 
        if  (dint<0) && (i==int2-1) 
        ind=[ind,tam2]; nev=nev+1; 
        end  
    dset=packages{i}; 
    fit=polyfit(dset(:,2),dset(:,1),1); 
    b_value(i)=20*abs(fit(1)); 
     
end 
  
amp45 = size(data_ae((data_ae(data_ae(:,3)>=45 & data_ae(:,3)<=45.5)),:)); 
amp_45=amp45(1,1); 
amp46 = size(data_ae((data_ae(data_ae(:,3)>=45.5 & data_ae(:,3)<=46.5)),:)); 
amp_46=amp46(1,1); 
amp47 = size(data_ae((data_ae(data_ae(:,3)>=46.5 & data_ae(:,3)<=47.5)),:)); 
amp_47=amp47(1,1); 
amp48 = size(data_ae((data_ae(data_ae(:,3)>=47.5 & data_ae(:,3)<48.5)),:)); 
amp_48=amp48(1,1); 
amp49 = size(data_ae((data_ae(data_ae(:,3)>=48.5 & data_ae(:,3)<49.5)),:)); 
amp_49=amp49(1,1); 
amp50 = size(data_ae((data_ae(data_ae(:,3)>=49.5 & data_ae(:,3)<50.5)),:)); 
amp_50=amp50(1,1); 
amp51 = size(data_ae((data_ae(data_ae(:,3)>=50.5 & data_ae(:,3)<51.5)),:)); 
amp_51=amp51(1,1); 
amp52 = size(data_ae((data_ae(data_ae(:,3)>=51.5 & data_ae(:,3)<52.5)),:)); 
amp_52=amp52(1,1); 
amp53 = size(data_ae((data_ae(data_ae(:,3)>=52.5 & data_ae(:,3)<53.5)),:)); 
amp_53=amp53(1,1); 
amp54 = size(data_ae((data_ae(data_ae(:,3)>=53.5 & data_ae(:,3)<54.5)),:)); 
amp_54=amp54(1,1); 
amp55 = size(data_ae((data_ae(data_ae(:,3)>=54.5 & data_ae(:,3)<55.5)),:)); 
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amp_55=amp55(1,1); 
amp56 = size(data_ae((data_ae(data_ae(:,3)>=55.5 & data_ae(:,3)<56.5)),:)); 
amp_56=amp56(1,1); 
amp57 = size(data_ae((data_ae(data_ae(:,3)>=56.5 & data_ae(:,3)<57.5)),:)); 
amp_57=amp57(1,1); 
amp58 = size(data_ae((data_ae(data_ae(:,3)>=57.5 & data_ae(:,3)<58.5)),:)); 
amp_58=amp58(1,1); 
amp59 = size(data_ae((data_ae(data_ae(:,3)>=58.5 & data_ae(:,3)<59.5)),:)); 
amp_59=amp59(1,1); 
amp60 = size(data_ae((data_ae(data_ae(:,3)>=59.5 & data_ae(:,3)<60.5)),:)); 
amp_60=amp60(1,1); 
amp61 = size(data_ae((data_ae(data_ae(:,3)>=60.5 & data_ae(:,3)<61.5)),:)); 
amp_61=amp61(1,1); 
amp62 = size(data_ae((data_ae(data_ae(:,3)>=61.5 & data_ae(:,3)<62.5)),:)); 
amp_62=amp62(1,1); 
amp63 = size(data_ae((data_ae(data_ae(:,3)>=62.5 & data_ae(:,3)<63.5)),:)); 
amp_63=amp63(1,1); 
amp64 = size(data_ae((data_ae(data_ae(:,3)>=63.5 & data_ae(:,3)<64.5)),:)); 
amp_64=amp64(1,1); 
amp65 = size(data_ae((data_ae(data_ae(:,3)>=64.5 & data_ae(:,3)<65.5)),:)); 
amp_65=amp65(1,1); 
amp66 = size(data_ae((data_ae(data_ae(:,3)>=65.5 & data_ae(:,3)<66.5)),:)); 
amp_66=amp66(1,1); 
amp67 = size(data_ae((data_ae(data_ae(:,3)>=66.5 & data_ae(:,3)<67.5)),:)); 
amp_67=amp67(1,1); 
amp68 = size(data_ae((data_ae(data_ae(:,3)>=67.5 & data_ae(:,3)<68.5)),:)); 
amp_68=amp68(1,1); 
amp69 = size(data_ae((data_ae(data_ae(:,3)>=68.5 & data_ae(:,3)<69.5)),:)); 
amp_69=amp69(1,1); 
amp70 = size(data_ae((data_ae(data_ae(:,3)>=69.5 & data_ae(:,3)<70.5)),:)); 
amp_70=amp70(1,1); 
amp71 = size(data_ae((data_ae(data_ae(:,3)>=70.5 & data_ae(:,3)<71.5)),:)); 
amp_71=amp71(1,1); 
amp72 = size(data_ae((data_ae(data_ae(:,3)>=71.5 & data_ae(:,3)<72.5)),:)); 
amp_72=amp72(1,1); 
amp73 = size(data_ae((data_ae(data_ae(:,3)>=72.5 & data_ae(:,3)<73.5)),:)); 
amp_73=amp73(1,1); 
amp74 = size(data_ae((data_ae(data_ae(:,3)>=73.5 & data_ae(:,3)<74.5)),:)); 
amp_74=amp74(1,1); 
amp75 = size(data_ae((data_ae(data_ae(:,3)>=74.5 & data_ae(:,3)<75.5)),:)); 
amp_75=amp75(1,1); 
amp76 = size(data_ae((data_ae(data_ae(:,3)>=75.5 & data_ae(:,3)<76.5)),:)); 
amp_76=amp76(1,1); 
amp77 = size(data_ae((data_ae(data_ae(:,3)>=76.5 & data_ae(:,3)<77.5)),:)); 
amp_77=amp77(1,1); 
amp78 = size(data_ae((data_ae(data_ae(:,3)>=77.5 & data_ae(:,3)<78.5)),:)); 
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amp_78=amp78(1,1); 
amp79 = size(data_ae((data_ae(data_ae(:,3)>=78.5 & data_ae(:,3)<79.5)),:)); 
amp_79=amp79(1,1); 
amp80 = size(data_ae((data_ae(data_ae(:,3)>=79.5 & data_ae(:,3)<80.5)),:)); 
amp_80=amp80(1,1); 
amp81 = size(data_ae((data_ae(data_ae(:,3)>=80.5 & data_ae(:,3)<81.5)),:)); 
amp_81=amp81(1,1); 
amp82 = size(data_ae((data_ae(data_ae(:,3)>=81.5 & data_ae(:,3)<82.5)),:)); 
amp_82=amp82(1,1); 
amp83 = size(data_ae((data_ae(data_ae(:,3)>=82.5 & data_ae(:,3)<83.5)),:)); 
amp_83=amp83(1,1); 
amp84 = size(data_ae((data_ae(data_ae(:,3)>=83.5 & data_ae(:,3)<84.5)),:)); 
amp_84=amp84(1,1); 
amp85 = size(data_ae((data_ae(data_ae(:,3)>=84.5 & data_ae(:,3)<85.5)),:)); 
amp_85=amp85(1,1); 
amp86 = size(data_ae((data_ae(data_ae(:,3)>=85.5 & data_ae(:,3)<86.5)),:)); 
amp_86=amp86(1,1); 
amp87 = size(data_ae((data_ae(data_ae(:,3)>=86.5 & data_ae(:,3)<87.5)),:)); 
amp_87=amp87(1,1); 
amp88 = size(data_ae((data_ae(data_ae(:,3)>=87.5 & data_ae(:,3)<88.5)),:)); 
amp_88=amp88(1,1); 
amp89 = size(data_ae((data_ae(data_ae(:,3)>=88.5 & data_ae(:,3)<89.5)),:)); 
amp_89=amp89(1,1); 
amp90 = size(data_ae((data_ae(data_ae(:,3)>=89.5 & data_ae(:,3)<90.5)),:)); 
amp_90=amp90(1,1); 
amp91 = size(data_ae((data_ae(data_ae(:,3)>=90.5 & data_ae(:,3)<91.5)),:)); 
amp_91=amp91(1,1); 
amp92 = size(data_ae((data_ae(data_ae(:,3)>=91.5 & data_ae(:,3)<92.5)),:)); 
amp_92=amp92(1,1); 
amp93 = size(data_ae((data_ae(data_ae(:,3)>=92.5 & data_ae(:,3)<93.5)),:)); 
amp_93=amp93(1,1); 
amp94 = size(data_ae((data_ae(data_ae(:,3)>=93.5 & data_ae(:,3)<94.5)),:)); 
amp_94=amp94(1,1); 
amp95 = size(data_ae((data_ae(data_ae(:,3)>=94.5 & data_ae(:,3)<95.5)),:)); 
amp_95=amp95(1,1); 
amp96 = size(data_ae((data_ae(data_ae(:,3)>=95.5 & data_ae(:,3)<96.5)),:)); 
amp_96=amp96(1,1); 
amp97 = size(data_ae((data_ae(data_ae(:,3)>=96.5 & data_ae(:,3)<97.5)),:)); 
amp_97=amp97(1,1); 
amp98 = size(data_ae((data_ae(data_ae(:,3)>=97.5 & data_ae(:,3)<98.5)),:)); 
amp_98=amp98(1,1); 
amp99 = size(data_ae((data_ae(data_ae(:,3)>=98.5 & data_ae(:,3)<99.5)),:)); 
amp_99=amp99(1,1); 
amp100 = size(data_ae((data_ae(data_ae(:,3)>=99.5 & data_ae(:,3)<=100)),:)); 
amp_100=amp100(1,1); 
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s=[amp_45,amp_46,amp_47,amp_48,amp_49,amp_50,amp_51,amp_52,amp_53,amp_54
,amp_55,amp_56,amp_57,amp_58,amp_59,amp_60,amp_61,amp_62,amp_63,amp_64,a
mp_65,amp_66,amp_67,amp_68,amp_69,amp_70,amp_71,amp_72,amp_73,amp_74,amp
_75,amp_76,amp_77,amp_78,amp_79,amp_80,amp_81,amp_82,amp_83,amp_84,amp_8
5,amp_86,amp_87,amp_88,amp_89,amp_90,amp_91,amp_92,amp_93,amp_94,amp_95,a
mp_96,amp_97,amp_98,amp_99,amp_100]; 
n=[45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,7
2,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
]; 
amp=data_ae(:,3); 
figure(12) 
plot(tmark,b_value,'k') 
xlabel('Time(sec)') 
ylabel('B-Value') 
  
title('B-Value vs. Time')  
  
figure(13) 
semilogy(n,s,'.') 
s(s==0) = 1e-15; 
shat = log(s); 
A = [ones(length(s),1) n']; 
X = inv(A'*A)*A'*shat'; 
hold on 
nn = [n(1):(n(end)-n(1))/200:n(end)]; 
ss = exp(X(1)+nn*X(2)); 
semilogy(nn,ss,'k'); 
% xlabel('Amplitude') 
% ylabel('B-Value') 
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A13. CLIP GAGE READING PLOT 

%Clip gage reading.m 
close all  
clear all 
syms x 
w = 241.3; 
t = 12.7;  
Pmax = 65000;  
E=200000000000; 
%a=82.55;%final crack length =82.55+63.476=146.026 
a=solve(81.2363-w*(1.001-4.6695*x+18.44*x^2-236.82*x^3+1214.9*x^4-
2143.6*x^5),x); 
ii=0; 
c(5)=0; 
for i=1:5; 
    if  imag(a(i)) == '0.0' 
        imag(a(i)) 
        ii=ii+1 
        c(ii) = a(i) 
    else 
     
    end 
end 
  
dx1=a(1); 
d1=(1/dx1-1)^2*Pmax/(E*t*10^-6); 
  
solve(81.2364-w*(1.001-4.6695*x+18.46*x^2-236.82*x^3+1214.9*x^4-
2143.6*x^5),real (x)) 
dx2=0.15895707329469231379047052677717; 
d2=(1/dx2-1)^2*Pmax/(E*t*10^-6); 
del_d=d2-d1; 
del_d 
%Check 
%dxc={(E*d1*t/Pmax)^0.5+1}^(-1); 
%a1= w*(1.001-4.6695*dxc+18.64*dxc^2-236.82*dxc^3+1214.9*dxc^4-2143.6*dxc^5); 
  
%% 
close all  
clear all 
format long 
w = 241.3; 
t = 12.7;  
Pmax = 65000;  
E=200000000000; 



www.manaraa.com

 

197 
 

d=0.7164; 
ux=1/((E*t*d*10^-6/Pmax)^0.5+1); 
a=w*(1.001-4.6695*ux+18.46*ux^2-236.82*ux^3+1214.9*ux^4-2143.6*ux^5); 
%80.13884 
ux,a 
E2=ux; 
a1=241.3*(1.001-4.6695*E2+18.46*E2^2-236.82*E2^3+1214.9*E2^4-2143.6*E2^5); 
E2, a1 
%% 
clear all 
x=0:100:22800; 
%y=10^(-23).*x.^6-6*10^(-19).*x.^5+10^(-14).*x.^4-2*10^(-10).*x.^3+8*10^(-
7).*x.^2+0.0005.*x+80.735; 
y=1*10^(-23).*x.^6-6*10^(-19).*x.^5+1*10^(-14).*x.^4-2*10^(-10).*x.^3+8*10^(-
07).*x.^2 + 0.0005.*x + 80.735; 
plot(x,y) 
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A14. CLIP GAGE READING 

%CLIPG.m 

close all  
clear all 
syms x 
format long 
cd('C:\Users\Saima\Dropbox\Mathlab code\Mozahid_Source mechanisms'); 
A=xlsread('CLIPGAGE.xls'); 
w = 241.3; 
t = 12.7;  
Pmax = 65000;  
E=200000000000; 
%a=82.55;%final crack length =82.55+63.476=146.026 
for k=1:109; 
A(k,5);A(k+1,5); 
   a=solve(A(k,5)-w*(1.001-4.6695*x+18.46*x^2-236.82*x^3+1214.9*x^4-
2143.6*x^5),x); 
ii=0; 
c(5)=0; 
 for i=1:5; 
    if  imag(a(i)) == '0.0'; 
        imag(a(i)); 
        ii=ii+1; 
        c(ii)= a(i); 
    else 
     
    end 
end 
dx1=max(c,[],2); 
d1=(1/dx1-1)^2*Pmax/(E*t*10^-6); 
dx1; d1; 
  
b=solve(A(k+1,5)-w*(1.001-4.6695*x+18.46*x^2-236.82*x^3+1214.9*x^4-
2143.6*x^5),x); 
jj=0; 
e(5)=0; 
for j=1:5; 
    if  imag(a(j)) == '0.0'; 
        imag(a(j)); 
        jj=jj+1; 
        e(jj)= b(j); 
    else 
     
    end 
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end 
dx2=max(e,[],2); 
d2=(1/dx2-1)^2*Pmax/(E*t*10^-6); 
sen(k+1)=0.5*(d2-d1)/(A(k+1,1)-A(k,1)); 
dx2; d2; sen; 
end 
  
figure 
plot(A(:,5),sen) 
title ('Clip gage sensitivity','FontSize',12) 
ylabel('Opening, mm/cycle','FontSize',12) 
xlabel('Crack length, mm','FontSize',12)  
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A15. CRACK GROWTH RATE 

%CLIPG_txt.m 
 
close all  
clear all 
cd('C:\Users\Saima\Dropbox\Mathlab code'); 
A=textread('CLIP.txt'); 
w = 241.3; 
t = 12.7;  
Pmax = 65000;  
E=200000000000; 
%a=82.55;%final crack length =82.55+63.476=146.026 
figure 
%plot(A(:,5),A(:,4)) 
title ('Clip gage sensitivity','FontSize',12) 
ylabel('Opening, mm/cycle','FontSize',12) 
xlabel('Crack length, mm','FontSize',12)  
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A16. MOMENT TENSOR ANLYSIS 

% Moment Tensor Anlysis 
clear all; 
  
cd('C:\Users\User\Dropbox\SM1-POD'); 
a=xlsread('Source mechanisms and POD.xlsx','Moment tensor'); 
Cs=-25; % sensor semsitivity -25 for WDI 
  
nr = size(a,2); 
  
tr = []; 
for i=9:65 
     
Rf1=-.71791;Rf2=-.71791;Rf3=-.71791;Rf4=-.71791;Rf5=-.71791; 
Rf6=-.9864; 
     
 A= 
[a(i,24)*a(i,24),2*a(i,24)*a(i,25),2*a(i,24)*a(i,26),a(i,25)*a(i,25),2*a(i,25)*a(i,26),a(i,26
)*a(i,26); 
        
a(i,28)*a(i,28),2*a(i,28)*a(i,29),2*a(i,28)*a(i,30),a(i,29)*a(i,29),2*a(i,29)*a(i,30),a(i,30)
*a(i,30); 
        
a(i,32)*a(i,32),2*a(i,32)*a(i,33),2*a(i,32)*a(i,34),a(i,33)*a(i,33),2*a(i,33)*a(i,34),a(i,34)
*a(i,34); 
        
a(i,36)*a(i,36),2*a(i,36)*a(i,37),2*a(i,36)*a(i,38),a(i,37)*a(i,37),2*a(i,37)*a(i,38),a(i,38)
*a(i,38); 
        
a(i,40)*a(i,40),2*a(i,40)*a(i,41),2*a(i,40)*a(i,42),a(i,41)*a(i,41),2*a(i,41)*a(i,42),a(i,42)
*a(i,42); 
        
a(i,44)*a(i,44),2*a(i,44)*a(i,46),2*a(i,44)*a(i,46),a(i,46)*a(i,46),2*a(i,46)*a(i,46),a(i,46)
*a(i,46)]; 
     
    
B=[a(i,3)*a(i,27)/(Cs*Rf1);a(i,6)*a(i,31)/(Cs*Rf2);a(i,9)*a(i,35)/(Cs*Rf3);a(i,12)*a(i,39)
/(Cs*Rf4); 
        a(i,15)*a(i,43)/(Cs*Rf5);a(i,18)*a(i,47)/(Cs*Rf6)]; 
     
m=(A\B)*0.0254*10^-3; 
        Mt=[m(1,1),m(2,1),m(3,1);m(2,1),m(4,1),m(5,1);m(3,1),m(5,1),m(6,1)]; 
     
    [v,e]=eig(Mt); 
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    AA=[1,1,1;0,-.5,1;-1,-.5,1]; 
     
    en=sort(diag(e/norm(e)),'descend'); 
    '***Moment tensor***', Mt,'Eigen value',en,'Eigen vector',v 
    sprintf( 'Shear, X(percentage) = %.2f ''****** compensated linear vector dipole,CLVD 
(percentage) = %.2f ''*****Mean(Percentage) = %.2f ' ,100*inv(AA)*en) 
    X= 100*inv(AA)*en; 
    if  X(1,1)<40 
        fprintf('Line: %i: Type of crack:*****Tensile Crack*****\n',i); 
        tr = [tr; [a(i,2) 1]]; 
    else 
         fprintf('Line: %i: Type of crack:*****shear Crack*****\n',i) 
        tr = [tr; [a(i,2) 2]]; 
    end    
end 
 
*************************************************** ********************* 
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